matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTrigonometrische FunktionenPeriode finden
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Trigonometrische Funktionen" - Periode finden
Periode finden < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Periode finden: Trig. Funktion
Status: (Frage) beantwortet Status 
Datum: 18:13 Mo 06.09.2010
Autor: marco-san

Aufgabe
Wie gross ist die Periode, wo liegen Ihre Nullstellen und relativen Extremwerte?

[mm] y=1-sin(x)^2 [/mm]

Hallo zusammen,

die Nullstelle habe ich rausgefunden.

[mm] 1=sin(x)^2 [/mm]

[mm] \wurzel[]{1}=\wurzel[]{sin(x)^2} [/mm]

1=sin(x)
x= pi/2.

Wie komme ich denn jetzt auf die anderen Extremwerte und vor allem die Periode?

Ohne Differnzieren / Integrieren.

Vielen Dank für eure Hilfe

        
Bezug
Periode finden: Antwort
Status: (Antwort) fertig Status 
Datum: 18:32 Mo 06.09.2010
Autor: pythagora

Hi,
> Wie gross ist die Periode, wo liegen Ihre Nullstellen und
> relativen Extremwerte?
>  
> [mm]y=1-sin(x)^2[/mm]
>  Hallo zusammen,
>  
> die Nullstelle habe ich rausgefunden.
>  
> [mm]1=sin(x)^2[/mm]
>  
> [mm]\wurzel[]{1}=\wurzel[]{sin(x)^2}[/mm]
>  
> 1=sin(x)
>  x= pi/2.

[ok]

> Wie komme ich denn jetzt auf die anderen Extremwerte und

anderen?? bisher hast du nur die nullstellen berechnet...
wenn's nicht mit ableiten/differenzieren sein soll, dann könntest du die funktion zeichnen oder zeichnen lassen. Oder du rechnest für einen x-wert (x=0) mal aus und dann für den nächsten (x=1) und schaust, bis wohin der wert größer wird und ab wo wieder kleiner.... verständlich??
aber wieso nicht mit ableiten???

> vor allem die Periode?

Für die periode wäre es sicher praktisch das aussehen zu kennen... weißt du denn wie eine periode ausschaut?? von wo bis wo diese geht???

LG
pythagora

Bezug
                
Bezug
Periode finden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:41 Mo 06.09.2010
Autor: marco-san

Hallo Phytagora,

vielen Dank für die Antwort.

Unser Dozent meint ohne Diff. :-)

In demfall ist es sicher korrekt, wenn ich ein paar x-Werte berechne und die Funktion zeichenen werde.

Ich dachte es gäbe eine rechnerische Methode um die Periode auszurechnen.

Gruss und vielen Dank.

Bezug
        
Bezug
Periode finden: Antwort
Status: (Antwort) fertig Status 
Datum: 19:53 Mo 06.09.2010
Autor: reverend

Hallo marco-san,

da hast Du aber bisher nur die Hälfte der Wahrheit.

> Wie gross ist die Periode, wo liegen Ihre Nullstellen und
> relativen Extremwerte?
>  
> [mm]y=1-sin(x)^2[/mm]
>  Hallo zusammen,
>  
> die Nullstelle habe ich rausgefunden.

Die Nullstelle? Es gibt doch unendlich viele, die Funktion ist ja periodisch.

> [mm]1=sin(x)^2[/mm]
>  
> [mm]\wurzel[]{1}=\wurzel[]{sin(x)^2}[/mm]
>  
> 1=sin(x)
>  x= pi/2.

Und was ist mit [mm] -1=\sin{x} [/mm] ?

> Wie komme ich denn jetzt auf die anderen Extremwerte und
> vor allem die Periode?

Tja, der Sinus ist ja [mm] 2\pi-periodisch. [/mm] Nun fragt sich doch aber, ob Deine Funktion nicht eine kleinere Periode hat. In Frage kommt eigentlich nur noch als andere Möglichkeit, dass die Periode [mm] \pi [/mm] beträgt, wie sich aus der dann vollständigen Lösung von oben ergibt.

Du müsstest also mal überprüfen, ob [mm] 1-\sin^2{x}=1-\sin^2{(x+\pi)} [/mm] gilt.

> Ohne Differnzieren / Integrieren.

Ja, im schlimmsten Fall brauchst Du Additionstheoreme, aber es geht auch ganz bequem ohne. Du brauchst dafür nur einen Zusammenhang von [mm] \sin{x} [/mm] und [mm] \sin{(x+\pi)}. [/mm] Den solltest Du kennen.

> Vielen Dank für eure Hilfe

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]