matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-NumerikPeano-Kern Mittelpunktregel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Numerik" - Peano-Kern Mittelpunktregel
Peano-Kern Mittelpunktregel < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Peano-Kern Mittelpunktregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:41 Mo 09.09.2013
Autor: yyannekk

Aufgabe
Der Peano-Kern der Mittelpunktregel [mm] \integral_{0}^{1}{f(x) dx }\approx [/mm] f(0.5) ist  K(x)=0.5 * min {  [mm] x^2, (1-x)^2 [/mm]  }

Lösung: Die Fehlerordnung der Mittelpunktregel ist 2, daher gilt K(x) = 0.5 * [mm] (1-x)^2 [/mm] - [mm] 1*(0.5-x)_{+} [/mm] = 0.5 * min { [mm] x^2, (1-x)^2 [/mm] }

Hi

Eigentlich ist mir alles klar bei der Aufgabe. Mit der Formel ausm Skript komme ich bis
K(x) = 0.5 * [mm] (1-x)^2 [/mm] - [mm] 1*(0.5-x)_{+} [/mm]
allerdings verstehe ich nicht was das [mm] (0.5-x)_{+} [/mm] bedeutet, also das + im Index.
Folglich verstehe ich die Rechnung  0.5 * [mm] (1-x)^2 [/mm] - [mm] 1*(0.5-x)_{+} [/mm] = 0.5 * min { [mm] x^2, (1-x)^2 [/mm] } nicht. Könnte mir das jmd erklären?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Peano-Kern Mittelpunktregel: Antwort
Status: (Antwort) fertig Status 
Datum: 08:38 Di 10.09.2013
Autor: meili

Hallo,

> Der Peano-Kern der Mittelpunktregel [mm]\integral_{0}^{1}{f(x) dx }\approx[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


> f(0.5) ist  K(x)=0.5 * min {  [mm]x^2, (1-x)^2[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

  }

>  
> Lösung: Die Fehlerordnung der Mittelpunktregel ist 2,
> daher gilt K(x) = 0.5 * [mm](1-x)^2[/mm] - [mm]1*(0.5-x)_{+}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

= 0.5 * min

> { [mm]x^2, (1-x)^2[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

}

>  Hi
>  
> Eigentlich ist mir alles klar bei der Aufgabe. Mit der
> Formel ausm Skript komme ich bis
>   K(x) = 0.5 * [mm](1-x)^2[/mm] - [mm]1*(0.5-x)_{+}[/mm]
>  allerdings verstehe ich nicht was das [mm](0.5-x)_{+}[/mm]
> bedeutet, also das + im Index.

Es ist folgendermaßen definiert:

[mm] $(0.5-x)_{+} [/mm] := [mm] \begin{cases} 0.5 - x, & \mbox{für } x \le 0.5 \\ 0, &\mbox{für } x > 0.5 \end{cases}$ [/mm]

>  Folglich verstehe ich die Rechnung  0.5 * [mm](1-x)^2[/mm] -
> [mm]1*(0.5-x)_{+}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

= 0.5 * min { [mm]x^2, (1-x)^2[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

} nicht. Könnte

> mir das jmd erklären?
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß
meili

Bezug
                
Bezug
Peano-Kern Mittelpunktregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:51 So 26.10.2014
Autor: questionpeter

moin,
der beitrag ist zwar schon länger her, aber ich beschäftige mich zur zeit auch mit diesen Thema. meine frage ist:

warum ist (0,5-x)_+  für 0,5-x falls [mm] x\le [/mm] 0,5 und 0, falls x>0,5 definiert bzw wie kommt man darauf.

in unseren skript haben die peano kern für den mittelpunktregel folg def.
für p=2
[mm] k_p(\tau)=\bruch{(1-\tau)^p}{p!}-\summe_{i=1}^{s}b_i\bruch{((c_i-\tau)_+)^{p-1}}{(p-1)!} [/mm]

[mm] k_2(\tau)=\bruch{(1-\tau)^2}{2}-(\bruch{1}{2}-\tau)_+=\begin{cases} \bruch{\tau^2}{2}, & \mbox{für } 0\le\tau\le\bruch{1}{2} \mbox{ } \\ \bruch{(1-\tau)^2}{2}, & \mbox{für } \bruch{1}{2}\le\tau\le 1 \mbox{ u} \end{cases} [/mm]

betrachten wir hhier nicht der 1.Teil d.h. [mm] \bruch{(1-\tau)^2}{2}, [/mm] oder? bzw. wie kommt man auf [mm] \bruch{\tau^2}{2} [/mm] und [mm] \bruch{(1-\tau)^2}{2} [/mm]  und ddie dazugehörigen [mm] \tau- [/mm] werte. warum betr man hier im alten beispiel den 2. teil bzw warum betrachtet man bei diesen beispiel nicht den 2. teil sprich [mm] (\bruch{1}{2}-\tau)_+? [/mm] kann jemnad mir das verständlich erklären?

Bezug
                        
Bezug
Peano-Kern Mittelpunktregel: Antwort
Status: (Antwort) fertig Status 
Datum: 04:29 Mo 27.10.2014
Autor: meili

Hallo questionpeter,

> moin,
>  der beitrag ist zwar schon länger her, aber ich
> beschäftige mich zur zeit auch mit diesen Thema. meine
> frage ist:
>  
> warum ist (0,5-x)_+  für 0,5-x falls [mm]x\le[/mm] 0,5 und 0, falls
> x>0,5 definiert bzw wie kommt man darauf.

Ich würde sagen: aus Faulheit.
Nein, etwas schöner und hoffentlich verständlicher ausgedrückt:
Man definiert $f_+$, hier angewendet auf (0,5-x),
um eine kompaktere Schreibweise zu ermöglichen und sich nicht im
Fehlerterm und womöglich unterm Integral mit Fallunterscheidungen
herumplagen zu müssen.

>  
> in unseren skript haben die peano kern für den
> mittelpunktregel folg def.
>  für p=2
>  
> [mm]k_p(\tau)=\bruch{(1-\tau)^p}{p!}-\summe_{i=1}^{s}b_i\bruch{((c_i-\tau)_+)^{p-1}}{(p-1)!}[/mm]

Ok, hier kommt ja auch [mm] $(c_i-\tau)_+$ [/mm] vor.

>  

Nun eingesetzt für p=2 (Ist s=1, [mm] $b_1=1, c_1=\bruch{1}{2}$?) [/mm]
dürfte bis
[mm] $k_2(\tau)=\bruch{(1-\tau)^2}{2}-(\bruch{1}{2}-\tau)_+$ [/mm]
klar sein.

> [mm]k_2(\tau)=\bruch{(1-\tau)^2}{2}-(\bruch{1}{2}-\tau)_+=\begin{cases} \bruch{\tau^2}{2}, & \mbox{für } 0\le\tau\le\bruch{1}{2} \mbox{ } \\ \bruch{(1-\tau)^2}{2}, & \mbox{für } \bruch{1}{2}\le\tau\le 1 \mbox{ u} \end{cases}[/mm]

Um auf die Fallunterscheidung zu kommen, setzt man die Definition von $f_+$
(siehe Beitrag von fred97) bzw. die Folgerung daraus für [mm] $(\bruch{1}{2}-\tau)$ [/mm] ein.
[mm] $(\bruch{1}{2}-\tau)_+ [/mm] = [mm] max\{0; (\bruch{1}{2}-\tau)\} [/mm] = [mm] \begin{cases} \bruch{1}{2}-\tau, & \mbox{für } \tau \le \bruch{1}{2} \\ 0, & \mbox{für } \tau > \bruch{1}{2} \end{cases}$ [/mm]

Da wohl [mm] $\tau \in [/mm] [0;1]$ ist und für [mm] $\tau [/mm] = [mm] \bruch{1}{2}$ $(\bruch{1}{2}-\tau) [/mm] = 0$, ergeben sich die von dir angegebenen Grenzen bei den Fällen.

Wird das eingesetzt und etwas zusammengefasst, ist:
[mm]k_2(\tau)=\bruch{(1-\tau)^2}{2}-(\bruch{1}{2}-\tau)_+=\begin{cases}\bruch{1}{2}*\left(1-2\tau +\tau^2\right)-\bruch{1}{2}+\tau = \bruch{\tau^2}{2}, & \mbox{für } 0\le\tau\le\bruch{1}{2} \mbox{ } \\ \bruch{(1-\tau)^2}{2}-0 = \bruch{(1-\tau)^2}{2}, & \mbox{für } \bruch{1}{2}\le\tau\le 1 \end{cases}[/mm]

>  
> betrachten wir hhier nicht der 1.Teil d.h.
> [mm]\bruch{(1-\tau)^2}{2},[/mm] oder? bzw. wie kommt man auf
> [mm]\bruch{\tau^2}{2}[/mm] und [mm]\bruch{(1-\tau)^2}{2}[/mm]  und ddie
> dazugehörigen [mm]\tau-[/mm] werte. warum betr man hier im alten
> beispiel den 2. teil bzw warum betrachtet man bei diesen
> beispiel nicht den 2. teil sprich [mm](\bruch{1}{2}-\tau)_+?[/mm]
> kann jemnad mir das verständlich erklären?

Eine etwas andere Frage ist, warum man in Peano-Kernen nur den
positiven Teil $f_+$ "braucht" und es nicht ins negative gehen darf.
Dazu müsstest Du die Beweise dazu analysieren.

Gruß
meili


Bezug
        
Bezug
Peano-Kern Mittelpunktregel: Antwort
Status: (Antwort) fertig Status 
Datum: 08:52 Di 10.09.2013
Autor: fred97

Ergänzend:

Der Positivteil [mm] f_{+} [/mm] einer Funktion f ist definiert als [mm] f_{+}(x):= \max \{ f(x) , 0 \}. [/mm]

Der Negativteil [mm] f_{-} [/mm] einer Funktion f ist definiert als [mm] f_{-}(x):= \max \{ -f(x) , 0 \}. [/mm]

Es gilt dann

   [mm] f_{+} \ge [/mm] 0,

   [mm] f_{-} \ge [/mm] 0

und

  $ f = [mm] f_{+} -f_{-}$ [/mm] und [mm] $f_{+} [/mm] + [mm] f_{-} [/mm] = |f|.$


Manchmal schreibt man auch [mm] f^{+} [/mm] statt [mm] f_{+} [/mm] und  [mm] f^{-} [/mm] statt [mm] f_{-} [/mm]

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]