matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungPatialbruch berechnen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integralrechnung" - Patialbruch berechnen
Patialbruch berechnen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Patialbruch berechnen: Richtig? Wie gehts weiter?
Status: (Frage) beantwortet Status 
Datum: 16:15 Sa 26.08.2006
Autor: JustinSane

Aufgabe
[mm] \integral_{}^{}{\bruch{2x-1}{x^{2}-6x+9} dx} [/mm]

Hallo zusammen!
Ich bin bei der Berechnung eines Integrals und schaffe es eigentlich auch recht weit, habe aber das Gefühl, dass ich kurz vor dem Ziel nicht weiterkomme. Ich schreib einfach mal die ganze Rechnung auf, vielleicht hab ich mich ja verrechnet...

[mm] \integral_{}^{}{\bruch{2x-1}{x^{2}-6x+9} dx} [/mm]
=
[mm] \integral_{}^{}{\bruch{2x-1+5-5}{x^{2}-6x+9} dx} [/mm]
Erweitert...
=
[mm] \integral_{}^{}{\bruch{2x-6}{x^{2}-6x+9} dx} [/mm] + 5 * [mm] \integral_{}^{}{\bruch{1}{x^{2}-6x+9} dx} [/mm]
So, zunächst das erste Integral:
[mm] \integral_{}^{}{\bruch{2x-6}{x^{2}-6x+9} dx} [/mm]
=
ln [mm] |x^{2}-6x+9| [/mm]
Das zweite Integral:
Ich berechne die Stammfunktion von dem, was "hinter" dem Integralzeichen steht:

[mm] \bruch{1}{(x-3)^{2}} [/mm]
=
[mm] \bruch{A}{(x-3)} +\bruch{B}{(x-3)} [/mm]
Das bringe ich wieder auf den vorherigen Nenner
und erhalte
1 = A (x-3) + B (x-3)
   = A*x - 3*A + B*x - 3*B
   = (A+B) * x - 3 (A+B)
Der Teil mit x müsste Null werden, dies erreicht man allerdings nur dadurch, dass A+B=0 und damit wäre 0=1

Frage:
Wie komme ich auf die Nenner von [mm] \bruch{A}{(...)} +\bruch{B}{(...)} [/mm]

Schonmal Danke im Vorraus für eure Wertvolle Zeit.

        
Bezug
Patialbruch berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:36 Sa 26.08.2006
Autor: progmaker


> ...
>  Das zweite Integral:
>  Ich berechne die Stammfunktion von dem, was "hinter" dem
> Integralzeichen steht:
>  
> [mm]\bruch{1}{(x-3)^{2}}[/mm]
>  =
> [mm]\bruch{A}{(x-3)} +\bruch{B}{(x-3)}[/mm]

Hi,

das Ganze ist bei mir schon ne Weile her, aber ich meine mich zu errinern, dass bei mehrfachen Nullstellen der Exponent erhöht werden muss. Also:

[mm] \bruch{A}{(x-3)} +\bruch{B}{(x-3)^2} [/mm]

mfg,
progmaker

Bezug
        
Bezug
Patialbruch berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:48 Sa 26.08.2006
Autor: ardik

Hallo JustinSane,

Du könntest auch das zweite Integral durch Substitution integrieren mit $z=(x-3)$

Schöne Grüße,
ardik

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]