matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTransformationenPassender Begriff gesucht
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Transformationen" - Passender Begriff gesucht
Passender Begriff gesucht < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Transformationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Passender Begriff gesucht: immer das gleiche :-)
Status: (Frage) für Interessierte Status 
Datum: 22:00 Do 28.01.2010
Autor: Herby

Hallo,

ich bin mal wieder auf der Suche nach einem Begriff :-)


Beispiel:

(1) [mm] \integral_{t=0}^{\infty}{\rho(t)*e^{-st}\ dt}=\integral_{t=0}^{\infty}{1*e^{-st}\dt}=\left[-\bruch{1}{s}*e^{-st}\right]_{t=0}^{\infty}=\bruch{1}{s} [/mm]

und

(2) [mm] \integral_{t=0}^{\infty}{e^{\alpha t}*e^{-st}\ dt}=\integral_{t=0}^{\infty}{e^{-(s-\alpha)t}\ dt}=\left[-\bruch{1}{(s-a)}*e^{-(s-a)t}\right]_{t=0}^{\infty}=\frac1{s-a} [/mm]

(Konvergenzbedingungen wurden eingehalten ;-))

ABER es ist auch

[mm] \integral_{t=0}^{\infty}{e^{\alpha t}*e^{-st}\ dt}=\integral_{t=0}^{\infty}{e^{-(s-\alpha)t}\ dt}=\left[-\bruch{1}{(s-a)}*e^{-(s-a)t}\right]_{t=0}^{\infty}=\frac1{s}\quad \mathsf{f"ur}\quad \mathsf{a=0} [/mm]


Wie nennt man jetzt solch eine ??? Verknüpfung, Beziehung, Verbindung, .... - zwischen (1)  und  (2) - denn es kommt ja offensichtlich unter bestimmten Bedingungen das gleiche Ergebnis heraus.



LG
Herby

        
Bezug
Passender Begriff gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 22:15 Do 28.01.2010
Autor: MathePower

Hallo Herby,

> Hallo,
>  
> ich bin mal wieder auf der Suche nach einem Begriff :-)
>  
>
> Beispiel:
>  
> [mm]\integral_0^{+\infty}{\rho(t)*e^{-st}\ dt}=\integral_0^{+\infty}{1*e^{-st}\dt}=\left[-\bruch{1}{s}*e^{-st}\right]_{t=0}^{t=+\infty}=\bruch{1}{s}[/mm]
>  
> und
>  
> [mm]\integral_0^{\infty}{e^{\alpha t}*e^{-st}\ dt}=\integral_0^{+\infty}{e^{-(s-\alpha)t}\ dt}\left[-\bruch{1}{(s-a)}*e^{-(s-a)t}\right]_{t=0}^{t=+\infty}=\frac1{s-a}[/mm]
>  
> (Konvergenzbestimmungen wurden eingehalten ;-))
>  
> ABER es ist auch
>  
> [mm]\integral_0^{\infty}{e^{\alpha t}*e^{-st}\ dt}=\integral_0^{+\infty}{e^{-(s-\alpha)t}\ dt}\left[-\bruch{1}{(s-a)}*e^{-(s-a)t}\right]_{t=0}^{t=+\infty}=\frac1{s}\quad \sfmath{f"ur}\quad \sfmath{a=0}[/mm]
>  


Das ist klar, weil [mm]e^{0*t}=1[/mm].


>
> Wie nennt man jetzt solch eine ??? Verknüpfung, Beziehung,
> Verbindung, ....
>  


Es handelt sich hier um eine Laplace-Transfomation.

[mm]f\left(s\right)=\integral_{0}^{\infty}{ e^{-st}*F\left(t\right) \ dt}[/mm]

wobei F die Oberfunktion, Originalfunktion im Bereich [mm]t\in\left(0,\infty\right)[/mm]
und f die Unterfunktion, Bildfunktion bzw. Laplace-Transformierte ist.


>
>
> LG
>  Herby  


Gruss
MathePower

Bezug
                
Bezug
Passender Begriff gesucht: so war das nicht gemeint
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:27 Do 28.01.2010
Autor: Herby

Hi MathePower,

> Hallo Herby,
>  
> > Hallo,
>  >  
> > ich bin mal wieder auf der Suche nach einem Begriff :-)
>  >  
> >
> > Beispiel:
>  >  
> > [mm]\integral_0^{+\infty}{\rho(t)*e^{-st}\ dt}=\integral_0^{+\infty}{1*e^{-st}\dt}=\left[-\bruch{1}{s}*e^{-st}\right]_{t=0}^{t=+\infty}=\bruch{1}{s}[/mm]
>  
> >  

> > und
>  >  
> > [mm]\integral_0^{\infty}{e^{\alpha t}*e^{-st}\ dt}=\integral_0^{+\infty}{e^{-(s-\alpha)t}\ dt}\left[-\bruch{1}{(s-a)}*e^{-(s-a)t}\right]_{t=0}^{t=+\infty}=\frac1{s-a}[/mm]
>  
> >  

> > (Konvergenzbestimmungen wurden eingehalten ;-))
>  >  
> > ABER es ist auch
>  >  
> > [mm]\integral_0^{\infty}{e^{\alpha t}*e^{-st}\ dt}=\integral_0^{+\infty}{e^{-(s-\alpha)t}\ dt}\left[-\bruch{1}{(s-a)}*e^{-(s-a)t}\right]_{t=0}^{t=+\infty}=\frac1{s}\quad \sfmath{f"ur}\quad \sfmath{a=0}[/mm]
>  
> >  

>
>
> Das ist klar, weil [mm]e^{0*t}=1[/mm].
>  
>
> >
> > Wie nennt man jetzt solch eine ??? Verknüpfung, Beziehung,
> > Verbindung, ....
>  >  
>
>
> Es handelt sich hier um eine Laplace-Transfomation.
>  
> [mm]f\left(s\right)=\integral_{0}^{\infty}{ e^{-st}*F\left(t\right) \ dt}[/mm]
>  
> wobei F die Oberfunktion, Originalfunktion im Bereich
> [mm]t\in\left(0,\infty\right)[/mm]
>  und f die Unterfunktion, Bildfunktion bzw.
> Laplace-Transformierte ist.

da hast du mich jetzt völlig falsch verstanden :-)


Ich arbeite gerade mal wieder nach laaaanger Zeit an diesen Artikeln hier: MBLaplace -- und bei der Laplace-Trafo MB elementarer Funktionen - kam ich darauf.

Nun würde ich gerne eine neue Seite für eben diese Fälle erstellen, nur bei der Betitelung tue ich micht schwer.

Liebe Grüße
Herby

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Transformationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]