matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesPascalsches 3eck/11er Potenzen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Sonstiges" - Pascalsches 3eck/11er Potenzen
Pascalsches 3eck/11er Potenzen < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Pascalsches 3eck/11er Potenzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:55 Do 13.09.2007
Autor: blama

Aufgabe
Aufgabenstellung ist von mir selbst: In der Schule ist mir vor Jahren aufgefallen, dass zwischen dem Pascalschen Dreieck und den 11er Potenzen ein Zusammenhang besteht. Leider ist mir nicht klar, wie dieser zustande kommt oder wie man ihn beweisen kann. Ich schreibe mal meine Beobachtung auf:

[]Bild Pascalsches Dreieck (leider habe ich keinen TeX Code dafür).

Wenn man sich jetzt die Zeilen 1 bis 5 anschaut fällt folgendes auf:
Zeile 1: [mm]1 = 11^{0}[/mm]
Zeile 2: [mm]11 = 11^{1}[/mm]
Zeile 3: [mm]121 = 11^{2}[/mm]
Zeile 4: [mm]1331 = 11^{3}[/mm]
Zeile 5: [mm]14641 = 11^{4}[/mm]

Im Prinzip geht dies jetzt weiter, allerdings etwas komplizierter, da die Werte im Dreieck jetzt größer 10 werden. Zeile 6 ist also NICHT

[mm]15101051 = 11^{5}[/mm]

sondern

[mm]161051 = 1*10^{5} + 5*10^{4} + 10*10^{3} + 10*10^{2} + 5*10^{1} + 1*10^{0} = 11^{5}[/mm]

(analog dazu ist z.B. Zeile 4 [mm]1331 = 1*10^{3} + 3*10^{2} + 3*10^{1} + 1*10^{0}[/mm], jedoch kann man sich dies sparen und die Zeile "so als Zahl lesen", da beim Multiplizieren keine 10er Grenzen überschritten werden.)

Entsprechend geht es nun für [mm]11^{6}[/mm] weiter.

Es wäre toll, wenn mir jemand den Zusammenhang erklären könnte!

Vielen Dank,
Salek

PS: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Pascalsches 3eck/11er Potenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:13 Do 13.09.2007
Autor: leduart

Hallo
überleg wie du die jeweils nächste Zeile des Pascaldreicks kriegst. also von n nach n+1.  dann überleg, wie du schriftlich die "Zahl" in der n-ten Zeile mit 11 multiplizierst: Dann hast du das Rätsel selbst gelöst.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]