matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikPascalsche Dreieck
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - Pascalsche Dreieck
Pascalsche Dreieck < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Pascalsche Dreieck: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:47 Di 27.02.2007
Autor: Melli1988

Wie kann ich [mm] \vektor{n \\ k-1}+\vektor{n \\ k} [/mm] rechnen?

Ich weiß ich muss das mit den Fakultäten rechnen, aber ich kriegs irgendwie nicht gebacken... HILFEEE :(

Dankeschööön

LIebe Grüße

Melli

        
Bezug
Pascalsche Dreieck: Antwort
Status: (Antwort) fertig Status 
Datum: 18:06 Di 27.02.2007
Autor: angela.h.b.


> Wie kann ich [mm]\vektor{n \\ k-1}+\vektor{n \\ k}[/mm] rechnen?

Hallo,

[mm] \vektor{n \\ k-1}+\vektor{n \\ k}= \vektor{n+1 \\ k} [/mm]    (Additionstheorem)


Du kannst es per Hand ausrechnen, indem Du

[mm] \bruch{n!}{(k-1)!(n-k+1)!}+\bruch{n!}{(k)!(n-k)!} [/mm] Zunächst auf den Hauptnenner bringst.

Beachte: k!=(k-1)!k
(n-k+1)!=(n-k)!((n-k+1)

Gruß v. Angela

Bezug
                
Bezug
Pascalsche Dreieck: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:12 Di 27.02.2007
Autor: Melli1988

Ja, soweit war ich schon, aber ich schaffe es nicht, die Brüche auf einen Hauptnenner zu bringen!

:(

Bezug
                        
Bezug
Pascalsche Dreieck: Antwort
Status: (Antwort) fertig Status 
Datum: 18:45 Di 27.02.2007
Autor: tadescu

Aber das wurde doch schon beschrieben:
_________________________________
Du kannst es per Hand ausrechnen, indem Du

[mm] \bruch{n!}{(k-1)!(n-k+1)!}+\bruch{n!}{(k)!(n-k)!} [/mm] Zunächst auf den Hauptnenner bringst.

Beachte: k!=(k-1)!k
(n-k+1)!=(n-k)!((n-k+1)
_________________________________
ausführlicher:
[mm] \bruch{n!}{(k-1)!(n-k+1)!}+\bruch{n!}{(k)!(n-k)!} [/mm] =
[mm] \bruch{n!*k}{(k-1)!*k*(n-k+1)!}+\bruch{n!*(n-k+1)}{(k)!(n-k)!*(n-k+1)} [/mm] =
[mm] \bruch{n!*(n+1)}{k!*(n-k+1)!} [/mm] =
[mm] \bruch{(n+1)!}{k!*(n-k+1)!} [/mm]

Bezug
                        
Bezug
Pascalsche Dreieck: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:50 Di 27.02.2007
Autor: angela.h.b.


> Ja, soweit war ich schon,aber ich schaffe es nicht, die
> Brüche auf einen Hauptnenner zu bringen!

Hallo,

dann kapiere ich echt nicht, warum Du es nicht HINGESCHRIEBEN hast, oder zumindest geschrieben, daß es am Hauptnenner scheitert.

Gruß v. Angela





> Brüche auf einen Hauptnenner zu bringen!
>
> :(


Bezug
                                
Bezug
Pascalsche Dreieck: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:05 Di 27.02.2007
Autor: Melli1988

Dankeschöön!

Tut mir Leid! Ich dachte, dass es klar wäre, wenn ich sage ich komme nicht weiter nachdem ich in die Fakultäten umgewandelt hab.. :(

Ich hab noch eine Frage. Warum ist (n-k+1)!=(n-k)!*(n-k+1)?
Wäre lieb, wenn mir das noch jemand erklären könnte.

Dankeschöön!

Liebe Grüße, Melli

Bezug
                                        
Bezug
Pascalsche Dreieck: Antwort
Status: (Antwort) fertig Status 
Datum: 21:22 Di 27.02.2007
Autor: Cristina

Hallo Melli!

Du kennst die Definition der Fakultät:

[mm]\produkt_{i=1}^{n}i:=n![/mm]

Das heisst in Worten, dass n! das Produkt aller natürlichen Zahlen von 1 bis n ist.

Betrachten wir nun den Term (n+1)!. Dieser unterscheidet sich vom obigen genau um einen Faktor, nämlich n+1.
Formal:

[mm]\produkt_{i=1}^{n+1}i=(n+1)![/mm]

D.h. du kannst n! mit (n+1) multiplizieren und bekommst (n+1)!.
In Worten: Da n! das Produt aller natürlichen Zahlen von 1 bis n ist, ist n!*(n+1) dieses Produt multipliziert mit (n+1) also das Produkt aller natürlichen Zahlen von 1 bis (n+1).

[mm]\underbrace{1*2*\cdots*(n-1)*n}_{=n!}*(n+1)[/mm]

In deinem Beispiel ist n einfach durch (n-k) zu ersetzen. Somit kannst du es auf meine Erklärung und die Definition der Fakultät zurückführen.

Ich hoffe, ich konnte dir weiterhelfen, ansonsten mussst du keine Hemmungen haben, nochmals nachzufragen!

Liebe Grüsse, Cristina

Bezug
                                                
Bezug
Pascalsche Dreieck: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:10 Mi 28.02.2007
Autor: Melli1988

$ [mm] \underbrace{1\cdot{}2\cdot{}\cdots\cdot{}(n-1)\cdot{}n}_{=n!}\cdot{}(n+1) [/mm] $

Da versteh ich nicht warum dort das (n-1) zugefügt ist. Ist das bei n! auch so? Ich dachte immer, dass es nur 1*2*...*n wär. Hab ich mich da geirrt?

Das hab ich dann soweit verstanden. Aber irgendwie schaff ich es nicht die ganze Rechnung nachzuvollziehen. Ich kopire die Nachricht von oben rein und sag was genau ich nicht nachvollziehen kann.

Aber das wurde doch schon beschrieben:
_________________________________
Du kannst es per Hand ausrechnen, indem Du

[mm] \bruch{n!}{(k-1)!(n-k+1)!}+\bruch{n!}{(k)!(n-k)!} [/mm] Zunächst auf den Hauptnenner bringst.

Soweit ist es klar, ich muss sie auf den gleichen Nenner bringen.


Beachte: k!=(k-1)!k
(n-k+1)!=(n-k)!((n-k+1)   Warum muss ich das beachten? Mir ist nicht wirklich klar, wo in der Rechnung der Teil überhaupt berücksichtig wird... :(
_________________________________
ausführlicher:
[mm] \bruch{n!}{(k-1)!(n-k+1)!}+\bruch{n!}{(k)!(n-k)!} [/mm] =
[mm] \bruch{n!*k}{(k-1)!*k*(n-k+1)!}+\bruch{n!*(n-k+1)}{(k)!(n-k)!*(n-k+1)} [/mm]

Wurden hier die beiden Brüche erweitert, damit sie den gleichen Nenner haben?

=
[mm] \bruch{n!*(n+1)}{k!*(n-k+1)!} [/mm] =
[mm] \bruch{(n+1)!}{k!*(n-k+1)!} [/mm]

Und hier? Wir addiert man diese Fakultäten.

Irgendwie ist das ganz schön schwer nachzuvollziehen :(

Dankeschön und liebe Grüße


Bezug
                                                        
Bezug
Pascalsche Dreieck: Antwort
Status: (Antwort) fertig Status 
Datum: 23:32 Mi 28.02.2007
Autor: Event_Horizon

Hallo!

Erstmal, du hast vollkommen recht, das ist schwer nachzuvollziehen.

Allerdings ist insbesondere hier ein gewisses Maß an Eigeninitiative gefordert, sprich, du mußt sich selbst auch eingehend damit beschäftigen.

Ich gebe dir aber einen Tipp: Setze mal kleine Zahlen ein (allerdings n>k), und schreibe damit die Fakultäten mal aus. Das ist die einfachste Methode, den Überblick hier zu gewinnen.



> [mm]\bruch{n!}{(k-1)!(n-k+1)!}+\bruch{n!}{(k)!(n-k)!}[/mm] Zunächst
> auf den Hauptnenner bringst.
>
> Soweit ist es klar, ich muss sie auf den gleichen Nenner
> bringen.
>  
>
> Beachte: k!=(k-1)!k
> (n-k+1)!=(n-k)!((n-k+1)   Warum muss ich das beachten? Mir
> ist nicht wirklich klar, wo in der Rechnung der Teil
> überhaupt berücksichtig wird... :(

Beispiel: 5!=5*4*3*2*1=5*4!

>  _________________________________
> ausführlicher:
> [mm]\bruch{n!}{(k-1)!(n-k+1)!}+\bruch{n!}{(k)!(n-k)!}[/mm] =
> [mm]\bruch{n!*k}{\underbrace{(k-1)!*k}*(n-k+1)!}+\bruch{n!*(n-k+1)}{(k)!\underbrace{(n-k)!*(n-k+1)}}[/mm]
>
> Wurden hier die beiden Brüche erweitert, damit sie den
> gleichen Nenner haben?

Letztendlich schon. Das Erweitern wurde so durchgeführt, daß jetzt die erwähnten Tricks greifen. (ich hab das mal markiert)

>  
> =
> [mm]\bruch{n!*(n+1)}{k!*(n-k+1)!}[/mm] =
> [mm]\bruch{(n+1)!}{k!*(n-k+1)!}[/mm]
>
> Und hier? Wir addiert man diese Fakultäten.

Keine Fakultäten! Da steht nur ein n! als Faktor, das wurde ausgeklammert. Das einzelne k hebt sich mit dem in der Klammer dann weg.

> Irgendwie ist das ganz schön schwer nachzuvollziehen :(
>  
> Dankeschön und liebe Grüße
>  



Wie gesagt, setze mal kleine Zahlen ein, das kann manchmal hilfreich sein.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]