matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisPartitionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - Partitionen
Partitionen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partitionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:02 Fr 20.01.2006
Autor: susi5555

Aufgabe
Bestimmen sie alle funktionen f:[0,1]  [mm] \to [/mm] R , so dass für alle Partitionen P von [0,1] gilt U(f,P) = O(f,P) .  

hey leute!
Also ich muss diese aufgabe lösen und ich weiß absolut nicht wie ich anfangen soll und was ich machen muss!auch mir fehlen leider noch ein paar punkte für die klausur,deswegen wäre es cool,wenn mir jemand helfen könnte
...
Danke, susi

        
Bezug
Partitionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:22 Fr 20.01.2006
Autor: mathiash

Hallo susi,

koenntest Du vielleicht noch schreiben, was die Mengen U(f,P), O(f,P) sein sollen
(d.h. wie Ihr die allgemein definiert habt) ?
Das waere hilfreich, mir jedenfalls sagt diese Notation so ad hoc nichts.

Viele Gruesse,

Mathias



Bezug
                
Bezug
Partitionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:41 Fr 20.01.2006
Autor: Hanno

Hallo Matthias.

Ich denke es sind Unter- und Obersumme gemeint.


Liebe Grüße,
Hanno

Bezug
        
Bezug
Partitionen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:03 Fr 20.01.2006
Autor: Leopold_Gast

Ist das so trivial oder übersehe ich da etwas?

Wenn [mm]m[/mm] das Infimum und [mm]M[/mm] das Supremum von [mm]f[/mm] auf dem Intervall [mm][0,1][/mm] ist, dann betrachte die triviale Partition

[mm]P: \ \ 0 = x_0 < x_1 = 1[/mm]

Was ergibt nun die Voraussetzung, auf [mm]P[/mm] angewandt, für [mm]m,M[/mm] und damit für [mm]f[/mm]?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]