matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenPartikuläre Lösung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gewöhnliche Differentialgleichungen" - Partikuläre Lösung
Partikuläre Lösung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partikuläre Lösung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:47 Mo 15.01.2007
Autor: praezi

Aufgabe
Bestimmen Sie die allgemeine Lösung der inhomogenen, linearen DGL 2ter Ordnung.

[mm] Y''-Y=x^{3}-2x^{2}-4 [/mm]

Hallo zusammen...!!
Ich habe folgende Probleme beim Lösen dieser Aufgabe:

1. Beim lösen der homogenen Lösung trat das Problem auf, dass ich nicht weis wie ich sie lösen soll. Kann ich das mit der pq-Formel lösen oder fehlt dazu das Y' ? Wenn ich das mit der pq-Formel löse und für Y' 0 einsetze, komme ich auf [mm] \lambda1= [/mm] 1 und [mm] \lambda2= [/mm] -1. Ist das richtig...??

2. Beim lösen der partikulären Lösung wollte ich als Ansatz "Polynom n-ten Grades" wählen. Wie aber gehe ich dann vor, wenn ich dort kein x-Glied habe ?

[mm] yp=a3x^{3}+a2x^{2}+a1x+a0 [/mm]


Ich habe diese Frage in keinen anderem Forum gestellt.

        
Bezug
Partikuläre Lösung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:04 Mo 15.01.2007
Autor: Herby

Hallo Stefan,

> Bestimmen Sie die allgemeine Lösung der inhomogenen,
> linearen DGL 2ter Ordnung.
>  
> [mm]Y''-Y=x^{3}-2x^{2}-4[/mm]
>  Hallo zusammen...!!
>  Ich habe folgende Probleme beim Lösen dieser Aufgabe:
>  
> 1. Beim lösen der homogenen Lösung trat das Problem auf,
> dass ich nicht weis wie ich sie lösen soll. Kann ich das
> mit der pq-Formel lösen oder fehlt dazu das Y' ? Wenn ich
> das mit der pq-Formel löse und für Y' 0 einsetze, komme ich
> auf [mm]\lambda1=[/mm] 1 und [mm]\lambda2=[/mm] -1. Ist das richtig...??

na klar -

einfacher mit dem charakteristischen Polynom: [mm] \lambda^2-1=0 [/mm]

  

> 2. Beim lösen der partikulären Lösung wollte ich als Ansatz
> "Polynom n-ten Grades" wählen. Wie aber gehe ich dann vor,
> wenn ich dort kein x-Glied habe ?
>
> [mm]yp=a3x^{3}+a2x^{2}+a1x+a0[/mm]

[mm] y_p [/mm] zweimal ableiten, in der linken Seite der DGL einsetzen und dann Koeffizientenvergleich mit der Störfunktion.



Liebe Grüße
Herby

Bezug
                
Bezug
Partikuläre Lösung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:53 Mo 15.01.2007
Autor: praezi

Also wenn ich den Koeffizientenvergleich mache, erhalte ich dann:

[mm] Yp=-x^{3}+2x^{2}-6x+8 [/mm]

Könntest du mir das evtl. bestätigen

Bezug
                        
Bezug
Partikuläre Lösung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:35 Di 16.01.2007
Autor: Herby

Hi Stefan,

> Also wenn ich den Koeffizientenvergleich mache, erhalte ich
> dann:
>  
> [mm]Yp=-x^{3}+2x^{2}-6x+8[/mm]
>  
> Könntest du mir das evtl. bestätigen

ich habe da [mm] y_p=-x^3+2x^2-6x+\red{4} [/mm]

weil [mm] -a_0=-4 [/mm] ist



Liebe Grüße
Herby

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]