matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTheoretische InformatikPartielle Ordnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Theoretische Informatik" - Partielle Ordnung
Partielle Ordnung < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Theoretische Informatik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Ordnung: Ansatz
Status: (Frage) beantwortet Status 
Datum: 19:17 So 15.12.2013
Autor: rsprsp

Aufgabe
Wir betrachten die Menge $X$ aller Wörter der Länge $k$
über dem Alphabet [mm] $\{ 0 , 1 \}$ [/mm] und definieren die Relation als: $xRy$ genau dann, wenn ein [mm] $i\in\{1,...,k\}$ [/mm] existiert, so dass [mm] $x_{i} [/mm] > [mm] y_{i}$ [/mm] und [mm] $x_{j} [/mm] = [mm] y_{j}$ [/mm] für [mm] $j\in\{1,...,k\}\setminus\{i\}$. [/mm]

1. Warum definiert diese Relation keine partielle Ordnung auf $X$?
2. Wir bilden die reflexive, transitive Hülle von $(X,R)$. Wie lässt sich diese formal beschreiben? Die entstehende partielle Ordnung bezeichnen wir mit $(X,<)$.
3. Zeichnen Sie das Hesse-Diagramm von $(X,<)$ für $k=4$.
4. Bestimmen Sie die Höhe $h$ der partiellen Ordnung $(X,<)$ für $k=4$.
5. Bestimmen Sie die Weite $w$ der partiellen Ordnung $(X,<)$ für $k=4$.


Hallo, ich brauche Hilfe beim Ansatz dieser Aufgabe. Ich komme nicht drauf was ein Alphabet dieser Art ist und wie es aussieht. Könne mir jemand bei dieser Aufgabe helfen und sie Schritt für Schritt mit mir zu lösen?

        
Bezug
Partielle Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:56 Di 17.12.2013
Autor: schachuzipus

Hallo,

> Wir betrachten die Menge [mm]X[/mm] aller Wörter der Länge [mm]k[/mm]
> über dem Alphabet [mm]\{ 0 , 1 \}[/mm] und definieren die Relation
> als: [mm]xRy[/mm] genau dann, wenn ein [mm]i\in\{1,...,k\}[/mm] existiert, so
> dass [mm]x_{i} > y_{i}[/mm] und [mm]x_{j} = y_{j}[/mm] für
> [mm]j\in\{1,...,k\}\setminus\{i\}[/mm].

>

> 1. Warum definiert diese Relation keine partielle Ordnung
> auf [mm]X[/mm]?
> 2. Wir bilden die reflexive, transitive Hülle von [mm](X,R)[/mm].
> Wie lässt sich diese formal beschreiben? Die entstehende
> partielle Ordnung bezeichnen wir mit [mm](X,<)[/mm].
> 3. Zeichnen Sie das Hesse-Diagramm von [mm](X,<)[/mm] für [mm]k=4[/mm].
> 4. Bestimmen Sie die Höhe [mm]h[/mm] der partiellen Ordnung [mm](X,<)[/mm]
> für [mm]k=4[/mm].
> 5. Bestimmen Sie die Weite [mm]w[/mm] der partiellen Ordnung [mm](X,<)[/mm]
> für [mm]k=4[/mm].

>

> Hallo, ich brauche Hilfe beim Ansatz dieser Aufgabe. Ich
> komme nicht drauf was ein Alphabet dieser Art ist und wie
> es aussieht.

Na, hier geht es um die Menge [mm]X[/mm] aller Wörter w mit Länge [mm]k[/mm], die nur aus Nullen und Einsen bestehen.

Also [mm]X=\{w\in\{0,1\}^k\}[/mm]

Etwa sind [mm]\underbrace{010001}_{k \text{Stellen}}[/mm] oder [mm]\underbrace{111111}_{k \text{Stellen}}[/mm] aus [mm]X[/mm]

> Könne mir jemand bei dieser Aufgabe helfen
> und sie Schritt für Schritt mit mir zu lösen?

Fang mal mit a) an...

Hast du verstanden, was die Relation aussagt?

Zwei Wörter [mm]x[/mm] und [mm]y[/mm] aus [mm]X[/mm] stehen genau dann in Relation zueinander, wenn x in einem Eintrag einen größeren Wert als y hat und die Wörter ansonsten gleich sind.

Etwa (wieder für [mm]k=6[/mm]) die Wörter [mm]x=0\red 10111[/mm] und [mm]y=0\red 00111[/mm]

An der Stelle [mm]\red{i=2}[/mm] hat [mm]x[/mm] die Ziffer 1, die größer ist als die Ziffer 0, die an der 2.Stelle von y steht. An allen anderen Stellen stimmen x und y überein. Also $xRy$


Soweit so gut.

Wie ist es mit der Halbordnung. Was würde gelten, wenn [mm]R[/mm] eine Halbordnung wäre?

Drei Bedingungen.  Welche sind das?

Die eine geht doch direkt kaputt ...

Kommst du drauf?

Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Theoretische Informatik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]