matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesPartielle Intg im höher dim.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Sonstiges" - Partielle Intg im höher dim.
Partielle Intg im höher dim. < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Intg im höher dim.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:23 Fr 04.01.2013
Autor: sissile

Aufgabe
Partielle Integration
f [mm] \in C^1 (\IR^n) [/mm] (stetig differenzierbare Funktion ), v [mm] \in C^1_c (\IR^n)^n [/mm] (stetig differenzierbares Vektorfeld mit kompakten Träger)
ZZ.: [mm] \int_{\IR^n} [/mm] f(x) div v (x) dx = - [mm] \int_{\IR^n} [/mm] v(x).div f(x) dx

Beweis im Skriptum:

[mm] \int_{\IR^n} [/mm] f(x) div v(x) dx = [mm] \int_{a_n}^{b_n}... \int_{a_1}^{b_1} \sum_{j=1}^n [/mm] f(x) [mm] \partial_{x_j} v_j [/mm] (x) d [mm] x_1 [/mm] ... [mm] dx_n=\sum_{j=1}^n \int_{a_n}^{b_n}...\int_{a_{j-1}}^{b_{j-1}}\int_{a_{j+1}}^{b_{j+1}}... \int_{a_1}^{b_1} [/mm]  [ [mm] \int_{a_j}^{b_j} [/mm] f(x) [mm] \partial_{ x_j} v_j [/mm] (x) d [mm] x_j] dx_1... dx_n [/mm] = - [mm] \sum_{j=1}^n \int_{a_n}^{b_n}...\int_{a_{j-1}}^{b_{j-1}}\int_{a_{j+1}}^{b_{j+1}}... \int_{a_1}^{b_1} [/mm]  [ [mm] \int_{a_j}^{b_j} v_j [/mm] (x)  [mm] \partial_{x_j} [/mm]  f(x)d [mm] x_j] dx_1... dx_n [/mm]
= - [mm] \int_{\IR^n} [/mm] v(x). div f(x) dx

Q [mm] \supseteq \bigcup_{j=1}^{n} supp(v_j) [/mm]

Ich verstehe den vorletzen schritt nicht. Hier wird doch die partielle integration im 1.dim betrieben oder? Warum sind die Randdterme 0, (hat bestimmt mit träger zu tun, sehe aber nicht ganz wie)

        
Bezug
Partielle Intg im höher dim.: Antwort
Status: (Antwort) fertig Status 
Datum: 23:37 Fr 04.01.2013
Autor: rainerS

Hallo!

brauchst> Partielle Integration

>  f [mm]\in C^1 (\IR^n)[/mm] (stetig differenzierbare Funktion ), v
> [mm]\in C^1_c (\IR^n)^n[/mm] (stetig differenzierbares Vektorfeld
> mit kompakten Träger)
>  ZZ.: [mm]\int_{\IR^n}[/mm] f(x) div v (x) dx = - [mm]\int_{\IR^n}[/mm]
> v(x).div f(x) dx
>  Beweis im Skriptum:
>  
> [mm]\int_{\IR^n}[/mm] f(x) div v(x) dx = [mm]\int_{a_n}^{b_n}... \int_{a_1}^{b_1} \sum_{j=1}^n[/mm]
> f(x) [mm]\partial_{x_j} v_j[/mm] (x) d [mm]x_1[/mm] ... [mm]dx_n=\sum_{j=1}^n \int_{a_n}^{b_n}...\int_{a_{j-1}}^{b_{j-1}}\int_{a_{j+1}}^{b_{j+1}}... \int_{a_1}^{b_1}[/mm]
>  [ [mm]\int_{a_j}^{b_j}[/mm] f(x) [mm]\partial_{ x_j} v_j[/mm] (x) d [mm]x_j] dx_1... dx_n[/mm]
> = - [mm]\sum_{j=1}^n \int_{a_n}^{b_n}...\int_{a_{j-1}}^{b_{j-1}}\int_{a_{j+1}}^{b_{j+1}}... \int_{a_1}^{b_1}[/mm]
>  [ [mm]\int_{a_j}^{b_j} v_j[/mm] (x)  [mm]\partial_{x_j}[/mm]  f(x)d [mm]x_j] dx_1... dx_n[/mm]
>  
> = - [mm]\int_{\IR^n}[/mm] v(x). div f(x) dx
>  
> Q [mm]\supseteq \bigcup_{j=1}^{n} supp(v_j)[/mm]
>  
> Ich verstehe den vorletzen schritt nicht. Hier wird doch
> die partielle integration im 1.dim betrieben oder? Warum
> sind die Randdterme 0, (hat bestimmt mit träger zu tun,
> sehe aber nicht ganz wie)

Das ist ein bischen schlampig aufgeschrieben. Man nimmt sich einen Quader Q, der den Träger komplett enthält, und der so groß ist, dass v auf dem Rand des Quaders 0 ist. Deswegen fallen die Randterme alle weg.

  Viele Grüße
    Rainer


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]