matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationPartielle Integration
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integration" - Partielle Integration
Partielle Integration < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Integration: Aufgabe, Problem
Status: (Frage) beantwortet Status 
Datum: 22:09 Do 18.02.2010
Autor: bAbUm

Aufgabe
[mm] \bruch{x^3+2x^2+5x+2}{x^4+2x^3+2x^2+2x+1} [/mm]

Hallo.
Habe hier ein Problem mit der part. Integration.

mein ansatz (nach polynomdivision des nenners um ihn in linearfaktoren zu zerlegen und um die nullstellen zu finden):

[mm] \bruch{x^3+2x^2+5x+2}{(x+1)(x+1)(x^2+1)}= \bruch{A}{(x+1)} [/mm] + [mm] \bruch{B}{(x+1)} [/mm] + [mm] \bruch{C}{(x^2+1)} [/mm]

nun das ergebnis meiner lösung:

[mm] \bruch{x^3+2x^2+5x+2}{(x+1)(x+1(x^2+1)}= \bruch{A}{(x+1)} [/mm] + [mm] \bruch{B}{(x+1)^2} [/mm] + [mm] \bruch{Cx+D}{(x^2+1)} [/mm]

so was ich nicht verstehe:
-das Cx+D, warum kommt da nicht nur C hin?
-wie kommt es das in der Lösung jeweils einmal (x+1), [mm] (x+1)^2 [/mm] und [mm] (x^2+1) [/mm] im nenner verwendet wird. ich habe gelernt das man dafür die nullstellen nimmt. in der lösung sind das ja auch die nullstellen aber wieso dann nicht so wie ich es gemacht habe?

!!!!Danke!!!!!

        
Bezug
Partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 22:34 Do 18.02.2010
Autor: MathePower

Hallo bAbUm,

> [mm]\bruch{x^3+2x^2+5x+2}{x^4+2x^3+2x^2+2x+1}[/mm]
>  
> Hallo.
> Habe hier ein Problem mit der part. Integration.
>  
> mein ansatz (nach polynomdivision des nenners um ihn in
> linearfaktoren zu zerlegen und um die nullstellen zu
> finden):
>  
> [mm]\bruch{x^3+2x^2+5x+2}{(x+1)(x+1)(x^2+1)}= \bruch{A}{(x+1)}[/mm]
> + [mm]\bruch{B}{(x+1)}[/mm] + [mm]\bruch{C}{(x^2+1)}[/mm]
>  
> nun das ergebnis meiner lösung:
>  
> [mm]\bruch{x^3+2x^2+5x+2}{(x+1)(x+1(x^2+1)}= \bruch{A}{(x+1)}[/mm] +
> [mm]\bruch{B}{(x+1)^2}[/mm] + [mm]\bruch{Cx+D}{(x^2+1)}[/mm]
>  
> so was ich nicht verstehe:
>  -das Cx+D, warum kommt da nicht nur C hin?


Im Prinzip kann man für die konjugiert komplexen Nullstellen
auch so ansetzen:

[mm]\bruch{C_{1}}{x+i}+\bruch{C_{2}}{x-i}[/mm]

Dabei muss man allerdings mit komplexen Zahlen rechnen können.

Um dies zu vermeiden, wird der folgende Ansatz verwendet:

[mm]\bruch{Cx+D}{x^{2}+1}[/mm]



>  -wie kommt es das in der Lösung jeweils einmal (x+1),
> [mm](x+1)^2[/mm] und [mm](x^2+1)[/mm] im nenner verwendet wird. ich habe


Hier wird die Vielfachheit der Nullstelle x=-1 berücksichtigt.

Für das quadratische Polynom im Nenner, kann im Zähler
höchstens ein Polynom 1. Grades stehen.


> gelernt das man dafür die nullstellen nimmt. in der
> lösung sind das ja auch die nullstellen aber wieso dann
> nicht so wie ich es gemacht habe?


Nach []Wikipedia
ist der Ansatz wie dort beschrieben zu wählen.


>  
> !!!!Danke!!!!!


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]