matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungPartielle Integration?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - Partielle Integration?
Partielle Integration? < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Integration?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:03 Di 14.10.2008
Autor: rusty.

Aufgabe
[mm] \integral_{0}^{1}{\bruch{x^2}{\wurzel[2]{1-x^2}} dx} [/mm] =>
[mm] -x*{\wurzel[2]{(1-x^2)}}-\integral_{0}^{1}{\wurzel[2]{1-x^2} dx} [/mm]

Wenn man bei diesem Integral ein mal partiell integriert, kommt man auf ein zweites Integral. Wie kann man dieses berechnen? Partiell oder durch Substitution? Wie muss ich die Funktionen dann richtig wählen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Partielle Integration?: Antwort
Status: (Antwort) fertig Status 
Datum: 23:34 Di 14.10.2008
Autor: schachuzipus

Hallo rusty. und [willkommenmr],

> [mm]\integral_{0}^{1}{\bruch{x^2}{\wurzel[2]{1-x^2}} dx}[/mm] =>
>  
> [mm]-x*{\wurzel[2]{(1-x^2)}}-\integral_{0}^{1}{\wurzel[2]{1-x^2} dx}[/mm]

wie kommst du hierauf? Ich kann das irgendwie gerade nicht nachvollziehen, kannst du mal was zur Rechnung sagen/zeigen?

>  
> Wenn man bei diesem Integral ein mal partiell integriert,
> kommt man auf ein zweites Integral. Wie kann man dieses
> berechnen? Partiell oder durch Substitution? Wie muss ich
> die Funktionen dann richtig wählen?

Ich denke, du bist mit einer Substitution gleich im Ausgangsintegral ganz gut bedient:

Substituiere [mm] $x:=\sin(u)$ [/mm] und rechne mal los.
Du kommst unterwegs mal an ein Integral der Art [mm] $\int{\cos^2(u) \ du}$ [/mm]

Das kannst du dann partiell integrieren oder mit den Additionstheoremen rumtricksen

>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


LG

schachuzipus

Bezug
                
Bezug
Partielle Integration?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:47 Di 14.10.2008
Autor: rusty.

Vielen Dank, so probier ich das gleich mal!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]