matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungPartielle Integration
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integralrechnung" - Partielle Integration
Partielle Integration < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:52 Mi 16.04.2008
Autor: kam

Aufgabe
Berechnen Sie das unbestimmte Integral mittels Partieller Integration

[mm] \integral x*e^{2x}\, [/mm]  dx

nabend zusammen,

soll die obenstehende Aufgabe mittels Partieller Integration lösen. Mein Ansatz ist, dass ich

[mm] u=e^{2x} \to u'=2*e^{2x}*ln(e) [/mm]

[mm] v=\bruch{1}{2}{x^2} \to [/mm] v'=x

setze.


Wenn ich dann einsetze erhalte ich

[mm] \bruch{1}{2}{x^2}*e^{2x}-\integral 2*e^{2x}*ln(e)*\bruch{1}{2}{x^2} [/mm]


Meine Frage ist nun, ob dieser Ansatz soweit richtig ist, oder ob ich vllt bei den Ableitungen schon nen Fehler gemacht habe? Weil irgendwie traue ich dem noch nicht so ganz

        
Bezug
Partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 23:07 Mi 16.04.2008
Autor: Al-Chwarizmi


> Berechnen Sie das unbestimmte Integral mittels Partieller
> Integration
>  
> [mm]\integral x*e^{2x}\,[/mm]  dx
>  nabend zusammen,
>  
> soll die obenstehende Aufgabe mittels Partieller
> Integration lösen. Mein Ansatz ist, dass ich
>  
> [mm]u=e^{2x} \to u'=2*e^{2x}*ln(e)[/mm]
>  
> [mm]v=\bruch{1}{2}{x^2} \to[/mm] v'=x
>  
> setze.
>  
> Wenn ich dann einsetze erhalte ich
>  
> [mm]\bruch{1}{2}{x^2}*e^{2x}-\integral 2*e^{2x}*ln(e)*\bruch{1}{2}{x^2}[/mm]
>  
> Meine Frage ist nun, ob dieser Ansatz soweit richtig ist,
> oder ob ich vllt bei den Ableitungen schon nen Fehler
> gemacht habe? Weil irgendwie traue ich dem noch nicht so  ganz




Guten Abend!

Der Ansatz ist richtig, aber ungeschickt, da er gerade in die verkehrte Richtung führt!

Du solltest die Rollen von  u  und  v  gerade vertauschen, d.h.  die Exponentialfunktion integrieren und das  x ableiten!  Nur so kommst du zu einem einfacher zu auszuführenden Integral. Das sollte dann ganz leicht gehen.  Merke: bei solchen Integranden der Form  Polynom*transzendente Funktion  (exp,sin,cos) stets das Polynom ableiten, weil dann der Grad des Polynoms kleiner wird und der andere Faktor auf gleichem Komplexitätslevel bleibt!

Gruss!    Al-Ch.  

Bezug
                
Bezug
Partielle Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:20 Mi 16.04.2008
Autor: kam

super danke...

hab ich mir auch schon überlegt. Abgeschreckt hat mich aber, dass dann [mm] v'=e^{2x} [/mm] ist und da tu ich mich schwer v zu bestimmen. Kannst du mir da vllt noch nen Tipp zu geben, falls du einen weisst?

Bezug
                        
Bezug
Partielle Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 23:25 Mi 16.04.2008
Autor: schachuzipus

Hallo kam,

das geht entweder durch "scharfes Hinsehen" ;-) oder formal durch eine lineare Substitution.

Um [mm] $v(x)=\int{e^{2x} \ dx}$ [/mm] zu bestimmen, substituiere $u:=2x$

Dann ist [mm] $u'=\frac{du}{dx}=2$, [/mm] also [mm] $dx=\frac{du}{2}$ [/mm]

Damit ist also [mm] $\int{e^{2x} \ dx}=\int{e^{u} \frac{du}{2}}=\frac{1}{2}\int{e^{u} \ du}=...$ [/mm]


LG

schachuzipus

Bezug
                        
Bezug
Partielle Integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:27 Mi 16.04.2008
Autor: Al-Chwarizmi

Es ist leichter als du denkst.  Beim Ableiten von   [mm] e^{k x} [/mm] kommt ja einfach ein Faktor  k dazu, beim Integrieren  muss man entsprechend durch  k  dividieren.
Dasselbe funktioniert auch bei  [mm]sin(k x) , cos(k x) [/mm]  etc.

Gruss  Al-Ch.

Bezug
                        
Bezug
Partielle Integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:36 Mi 16.04.2008
Autor: kam

oh man, wenn man das dann hier so sieht ist das auch für mich verständlich und logisch... danke nochmal für die schnelle Hilfe... :-)

Bezug
                                
Bezug
Partielle Integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:40 Mi 16.04.2008
Autor: Al-Chwarizmi

O.K. ,  dann reiss dich jetzt los und schlaf gut!     Al-Ch.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]