matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-NumerikPartielle Dgl
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Numerik" - Partielle Dgl
Partielle Dgl < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Dgl: Ort- und Zeitdiskretisierung
Status: (Frage) beantwortet Status 
Datum: 10:09 Mi 01.04.2009
Autor: Nanimonai

Aufgabe
Ich habe die Wärmeleitungsgleichung, welche eine partielle Dgl ist mit Hilfe der Finiten-Differenzen-Methode ortsdiskretiersiert.  Diese beiden Gleichungen befinden sich im Anhang. Nun soll ich:
Durch Ortsdiskretisierung ensteht gewönliches Dgl-System bezüglich der
Zeit. Erneut Differenzenquotienten  (jetzt bezüglich Zeit) einführen.
Ergebnis --> "großes" algebraisches Gleichungssystem. _




Meine frage lautet wie ich jetzt genau die zeitdiskretiserung für diesen Fall durchführen muss.

[Dateianhang nicht öffentlich]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 1 (Typ: doc) [nicht öffentlich]
Anhang Nr. 2 (Typ: png) [nicht öffentlich]
        
Bezug
Partielle Dgl: Antwort
Status: (Antwort) fertig Status 
Datum: 22:35 Fr 03.04.2009
Autor: max3000

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Ein Stichwort hier wäre das Crank-Nicolson-Verfahren. Weiterhin gibt es dazu auch ein explizites und ein vollimplizites Shema.

Der Sinn daran ist eigentlich nur, dass du die Zeit auch noch einmal diskretisierst und die Ableitung durch einen Differenzenquotienten ersetzt.

Zum Beispiel für einen Vorwärtsdifferenzenquotienten ist die diskretisierte Wärmeleitungsgleichung folgende:

(\rho_{i,j} ist die Temperatur am Ort x_i und zur Zeit t_j
h ist die Ortsschrittweite
\tau ist die Zeitschrittweite)

$\bruch{\rho_{i,j+1}-\rho_{i,j}}{\tau}=b_0*\bruch{\rho_{i+1,j}-2\rho_{i,j}+\rho_{i-1,j}}{h^2}-a_0*(\rho_{i,j}-\rho_v})$

Damit hast du ein einfaches explizites Verfahren.
Das stellst du nach \rho_{i,j+1} um und kannst es einfach ausrechnen.
Alle anderen \rho_{i,j} sind gegeben. Zum Beispiel hast du ja die Werte zur Zeit t_0 in der Randbedingung gegeben.

Man kann dann auch ein implizites Verfahren mit Rückwärtsdifferenzenquotient oder einen Mix  (aus 1/2 Wichtung der beiden Techniken entsteht das Crank-Nicolson-Verfahren) erstellen.

Hoffe das hat deine Frage ungefähr beantworten können.

Diese Art von Probleme nennen sich auch parabolische Anfangs- und Randwertaufgaben. Müsste man eigentlich Literatur finden.

Schönen Gruß,

Max

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]