matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenPartielle Ableitungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Partielle Ableitungen
Partielle Ableitungen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Ableitungen: Augabe Nr.2
Status: (Frage) beantwortet Status 
Datum: 16:53 Fr 27.02.2009
Autor: ohlala

Aufgabe
Sei $ f: (x,y) [mm] \rightarrow [/mm] f(x,y)$ eine stetig differenzierbare Funktion. Drücken Sie das Resultat von
[mm] $\bruch{d}{dt} f(\integral_{t}^{2t} [/mm] k² [mm] e^k² [/mm] , [mm] dk,t²e^t)$ [/mm]
durch die partielle Ableitungen $ [mm] f_x$ [/mm] und [mm] $f_y [/mm] $ der Funktion f aus.

Also ich weiß,dass die Funktion f(x,y) aus [mm] $x=\integral_{t}^{2t} [/mm] k² [mm] e^k^2, [/mm] dk$ und $ [mm] y=t²e^t$ [/mm] besteht, aber wie schreib ich das dann,
also f(x,y)=...?
Dann habe ich gedacht muss ich hier die verallgemeinerte Kettenregel verwenden:
[mm] $\bruch{d}{dt} [/mm] f(x(t),y(t))= [mm] f_x(x(t),y(t))*x'(t)+ f_y(x(t),y(t))*y'(t)$ [/mm]

Ich habe für $ [mm] x(t)=\bruch{1}{4}(e^{2t}- e^t) [/mm]  und für [mm] y(t)=t²e^t [/mm] und als Ableitungen
[mm] x'(t)=\bruch{1}{2} e^{2t} -\bruch{1}{4} e^t [/mm]
[mm] y'(t)=e^t(t²+2t)$ [/mm]
raus.

stimmt das bis hier hin?

Danke für die hilfe und glg

        
Bezug
Partielle Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:31 Fr 27.02.2009
Autor: pelzig


> Sei [mm]f: (x,y) \rightarrow f(x,y)[/mm] eine stetig
> differenzierbare Funktion.

Ich nehme an die bildet nach [mm] $\IR$ [/mm] ab... sollte man vielleicht mal erwähnen.

> Also ich weiß,dass die Funktion f(x,y) aus
> [mm]x=\integral_{t}^{2t} k² e^k^2, dk[/mm] und [mm]y=t²e^t[/mm] besteht, aber
> wie schreib ich das dann,
> also f(x,y)=...?

Verstehe die Frage nicht.

>  Dann habe ich gedacht muss ich hier die verallgemeinerte
> Kettenregel verwenden:
>  [mm]\bruch{d}{dt} f(x(t),y(t))= f_x(x(t),y(t))*x'(t)+ f_y(x(t),y(t))*y'(t)[/mm]

Richtig.

> Ich habe für $ [mm]x(t)=\bruch{1}{4}(e^{2t}- e^t)[/mm]  und für  [mm]y(t)=t²e^t[/mm]

Wie kommst du denn darauf?

> und als Ableitungen
>  [mm]x'(t)=\bruch{1}{2} e^{2t} -\bruch{1}{4} e^t[/mm]

Das stimmt auch nicht, wenn ich dein (falsches) x(t) zugrunde lege: [mm] $\frac{d}{dt}1/2e^{2t}=e^{2t}$. [/mm]

> [mm]y'(t)=e^t(t²+2t)$[/mm] raus.

Ok.

Gruß, Robert

Bezug
        
Bezug
Partielle Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:09 So 01.03.2009
Autor: ohlala

Aufgabe
Sei f:(x,y) [mm] $\rightarrow [/mm] f(x,y)$ eine stetige Funktion. Drücken Sie das Resultat von $ [mm] \bruch{d}{dt}f(\integral_{t}^{2t} k²{e^k}^{2}, [/mm] dk, [mm] t²e^t)$ [/mm] durch die partiellen Ableitungen [mm] $f_x$ [/mm] und [mm] $f_y$ [/mm] der Funktion f aus.

Ok, also jetzt hab ich dann doch keinen plan mehr wie man das rechnet, könnte mir bitte jemand eine "Anleitung" oder sowas schreiben bzw. ausführliche Tipps geben.

Vielen lieben dank jetzt schon :-)

Bezug
                
Bezug
Partielle Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:22 Mo 02.03.2009
Autor: MathePower

Hallo ohlala,


> Sei f:(x,y) [mm]\rightarrow f(x,y)[/mm] eine stetige Funktion.
> Drücken Sie das Resultat von
> [mm]\bruch{d}{dt}f(\integral_{t}^{2t} k²{e^k}^{2}, dk, t²e^t)[/mm]
> durch die partiellen Ableitungen [mm]f_x[/mm] und [mm]f_y[/mm] der Funktion f
> aus.
>  Ok, also jetzt hab ich dann doch keinen plan mehr wie man
> das rechnet, könnte mir bitte jemand eine "Anleitung" oder
> sowas schreiben bzw. ausführliche Tipps geben.


Nach der Leibniz'schen Differentiationsformel ergibt sich:

[mm]\bruch{d}{dt}\left(\integral_{a\left(t\right)}^{b\left(t\right)}{g\left(k,t\right) \ dk}\right)=\integral_{a\left(t\right)}^{b\left(t\right)}{\bruch{\partial g\left(k,t\right)}{\partial t} \ dk}+\bruch{db\left(t\right)}{dt}*g\left(\ b\left(t\right),t \ \right)-\bruch{da\left(t\right)}{dt}*g\left(\ a\left(t\right),t \ \right)[/mm]


>  
> Vielen lieben dank jetzt schon :-)


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]