matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenPartielle Ableitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Partielle Ableitung
Partielle Ableitung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Ableitung: Lösung
Status: (Frage) beantwortet Status 
Datum: 00:49 So 03.01.2010
Autor: Cobra69

Aufgabe
p(x,y,z)=x sin(x [mm] y^2 [/mm] + z)

Hallo !!!
Komme bei der Aufgabe einfach nicht weiter. Mir ist schon klar , dass wenn ich partiell nach x Ableite, alle anderen Variablen als konstant angesehen werden. Nur stelle ich mir die Frage ob ich dafür die Kettenregel oder Produktregel benutzen soll. Handelt es sich hier um eine verschachtelte Funktion ?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Partielle Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:54 So 03.01.2010
Autor: schachuzipus

Hallo Cobra69 und herzlich [willkommenmr],

> p(x,y,z)=x sin(x [mm]y^2[/mm] + z)
>  Hallo !!!
>  Komme bei der Aufgabe einfach nicht weiter. Mir ist schon
> klar , dass wenn ich partiell nach x Ableite, alle anderen
> Variablen als konstant angesehen werden. Nur stelle ich mir
> die Frage ob ich dafür die Kettenregel oder Produktregel
> benutzen soll. Handelt es sich hier um eine verschachtelte
> Funktion ?

Nun, für die partielle Ableitung nach der Variablen x benötigst du die Produktregel, in den anderen Fällen ist das x nur eine multiplikative Konstante. Die beißt nicht.

In jedem Falle benötigst du für die (Teil-)Ableitung des Sinusausdruckes die Kettenregel ...

Hilft das zum Anfangen?

>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.  

LG

schachuzipus

Bezug
                
Bezug
Partielle Ableitung: erster Ansatz
Status: (Frage) beantwortet Status 
Datum: 01:06 So 03.01.2010
Autor: Cobra69

Danke für den Tipp Schachuzipus

O.k dann will ich mal loslegen:


dp/dx

Äußere Fkt: sin(g)             innere Fkt: [mm] x*y^2+z [/mm]
Ableitung Äußere Fkt: cos(g)   Ableitung innere [mm] Fkt:y^2 [/mm]

Erhalte ich: [mm] cos(x*y^2+z)*y^2 [/mm]


Bezug
                        
Bezug
Partielle Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 03:08 So 03.01.2010
Autor: Fulla

Hallo cobra,

soweit so gut, aber was ist mit dem Faktor $x$ bei [mm] $x\cdot\sin(\ldots)$? [/mm] Da brauchst du noch die Produktregel...


Lieben Gruß,
Fulla

Bezug
                                
Bezug
Partielle Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:34 So 03.01.2010
Autor: Cobra69

Hi Fulla !!!
Wenn ich jetzt den Ausdruck x*sin(...) betrachte, würde ich so vor gehen:
u = x*sin(...)          v=sin(...)
u´=sin(...)             v´=cos(...)

Und dann: u´*v+u*v´
Aber da ist ja noch der Term vom Anfang: [mm] cos(x*y^2+z)*y^2 [/mm]
Steh auf dem Schlauch.

Bezug
                                        
Bezug
Partielle Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:41 So 03.01.2010
Autor: schachuzipus

Hallo nochmal,

> Hi Fulla !!!
>  Wenn ich jetzt den Ausdruck x*sin(...) betrachte, würde
> ich so vor gehen:
>  u = x*sin(...)          v=sin(...)
>  u´=sin(...)             v´=cos(...)

[notok]

Es ist $u=u(x)=x$ und [mm] $v=v(x)=\sin(xy^2+z)$ [/mm]

Damit $u'=1$ und die Ableitung von $v$ geht nach der Kettenregel, $v'=...$ - das hattest du doch schon richtig berechnet.

Nur noch richtig zusammenbasteln gem. [mm] $u'\cdot{}v+u\cdot{}v'$ [/mm]

>  
> Und dann: u´*v+u*v´
>  Aber da ist ja noch der Term vom Anfang: [mm]cos(x*y^2+z)*y^2[/mm]
>  Steh auf dem Schlauch.

Dann gehe jetzt einen Schritt nach vorne ;-)

LG

schachuzipus


Bezug
                                                
Bezug
Partielle Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:58 So 03.01.2010
Autor: Cobra69

Ach schachuzipus ich glaub da hat es klick gemacht .-)

Setze ich nun alles ein erhalte ich:

[mm] \bruch{\partial p}{\partial x} [/mm] p(x,y,z)= [mm] x*sin(x*y^2 [/mm] + z)

[mm] sin(x*y^2+z)+cos(x*y^2+z)*x*y^2 [/mm]

Trotzdem fand ich die Aufgabe etwas tricky....

Bezug
                                                        
Bezug
Partielle Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:03 So 03.01.2010
Autor: schachuzipus

Hallo nochmal,

> Ach schachuzipus ich glaub da hat es klick gemacht .-)

Das ist gut!

>  
> Setze ich nun alles ein erhalte ich:
>  
> [mm] $\bruch{\partial p}{\partial x} [/mm] (x,y,z)= [mm] \red{\bruch{\partial }{\partial x}\left[}x\cdot{}sin(x*y^2 [/mm] + [mm] z)\red{\right]}$ [/mm]

>
> [mm] $\red{=}sin(x*y^2+z)+cos(x*y^2+z)*x*y^2$ [/mm] [ok]

Sehr schlörrig aufgeschrieben, aber nun richtig im Ergebnis!

>  
> Trotzdem fand ich die Aufgabe etwas tricky....

Das ist am Anfang halt so, je mehr du von den Bisetern verarztet hast, desto leichter fällt es dir.

LG

schachuzipus


Bezug
                                                                
Bezug
Partielle Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:10 So 03.01.2010
Autor: Cobra69

Danke nochmal Schachuzipus !!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]