matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungPartielle Ableitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differenzialrechnung" - Partielle Ableitung
Partielle Ableitung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:23 Di 14.04.2009
Autor: mmutter

Hallo ...
Ich hab folgendes Problem:
Zur Fehlerrechnung nach Gauß muss ich die Funktion
[mm] G(l,R,J,T_{1},T_{2}) [/mm] = [mm] \bruch{8*\pi*l*J}{R^{4}*(T_{1}^{2}-T_{2}^{2})} [/mm]
nach [mm] T_{1} [/mm] ableiten.
Nach R ableiten ist klar, da kann ich umstellen nach
[mm] G(l,R,J,T_{1},T_{2}) [/mm] = [mm] \bruch{8*\pi*l*J}{(T_{1}^{2}-T_{2}^{2})}*R^{-4} [/mm] und komm dann auf
[mm] G(l,R,J,T_{1},T_{2}) [/mm] = [mm] -\bruch{32*\pi*l*J}{R^{3}*(T_{1}^{2}-T_{2}^{2})}. [/mm]
Also denk ich mal das ich [mm] T_{1} [/mm] auch irgendwie aus dem Zähler bekommen muss ... ich weiss nur nich wie ...
Kann mir da vllt jemand weiterhelfen??

MfG Markus

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Partielle Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:34 Di 14.04.2009
Autor: Herby

Hallo Markus,

und recht herzlich [willkommenmr]


analog würde diese Aufgabe gehen: [mm] f(x)=\bruch{k}{x^2-1} [/mm]

Wie lautet hier f'(x)?


Lg
Herby

Bezug
                
Bezug
Partielle Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:32 Di 14.04.2009
Autor: mmutter

Kann ich hier die Quotientenregel anwenden??
also u = k, v = [mm] x^{2}-1 [/mm]
und u´= 1, v´= 2x
[mm] \bruch{x^{2}-1-k*2x}{(x^{2}-1)^{2}} [/mm]

Danke für die Anwort schonmal .. :-)

Bezug
                        
Bezug
Partielle Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:35 Di 14.04.2009
Autor: Gonozal_IX

Bis auf die Tatsache, dass u' = 0 und nicht 1 ist (denke dran, dass k eine konstante ist bzgl x!), stimmt es.

d.h. die Lösung wäre

[mm]\bruch{-k*2x}{(x^{2}-1)^{2}}[/mm]

Grüße,
Gono.


Bezug
        
Bezug
Partielle Ableitung: Ableitung nach R falsch
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:37 Di 14.04.2009
Autor: xPae

Hallo,

deine Ableitung nach R ist leider auch falsch! -4 -1 = -5

Lg

xPae

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]