matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisPartialsummen, Termumformungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Schul-Analysis" - Partialsummen, Termumformungen
Partialsummen, Termumformungen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partialsummen, Termumformungen: Termumformung
Status: (Frage) beantwortet Status 
Datum: 17:36 Di 09.11.2004
Autor: Wonko_der_Weise

Hallo,

meine Frage beschäftigt sich mit der Reihe [mm] \sum_{k=0}^{\infty}\frac{1}{k!}. [/mm] Die Konvergenz der Reihe soll mit Hilfe der Konvergenz der Folge der Partialsummen gezeigt werden: [mm] $s_n [/mm] = [mm] 1+\frac{1}{1!}+\frac{1}{2!}+...+\frac{1}{n!}$. [/mm] Diese werden, um die Beschränktheit zu zeigen, gegen [mm] $1+\frac{1}{2^0}+\frac{1}{2^1}+...+\frac{1}{2^{n-1}}$ [/mm] abgeschätzt. An dieser Stelle werden nun in dem mir vorliegenden Beispiel [mm] $1+\frac{1}{2^0}+\frac{1}{2^1}+...+\frac{1}{2^{n-1}}$ [/mm] und [mm] $1+\frac{1-\frac{1}{2^n}}{1-\frac{1}{2}}$ [/mm] gleich gesetzt.

Leider habe ich im Moment ein Brett vor dem Kopf und habe keine Ahnung, wie ich diese Gleichheit nachvollziehen kann.

Über eine Antwort würde ich mich echt freuen.

Vielen Dank im Voraus,


Adrian

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Partialsummen, Termumformungen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:54 Di 09.11.2004
Autor: Julius

Hallo Adrian!

Du kennst doch bestimmt die endliche geometrische Reihe:

[mm] $\sum\limits_{i=0}^{n-1} q^i [/mm] = [mm] \frac{1-q^n}{1-q}$. [/mm]

Also gilt speziell für $q = [mm] \frac{1}{2}$: [/mm]

(*) [mm] $\sum\limits_{i=0}^{n-1} \left( \frac{1}{2} \right)^i [/mm] = [mm] \frac{1-\left( \frac{1}{2}\right)^n}{1- \frac{1}{2}} [/mm] =  [mm] \frac{1- \frac{1}{2^n}}{1- \frac{1}{2}}$. [/mm]

Insgesamt folgt nun:

$1 + [mm] \frac{1}{2^0} [/mm] + [mm] \frac{1}{2^1} [/mm] + [mm] \ldots [/mm] + [mm] \frac{1}{2^{n-1}}$ [/mm]

$= 1 + [mm] \sum\limits_{i=0}^{n-1} \frac{1}{2^i}$ [/mm]

$= 1 + [mm] \sum\limits_{i=0}^{n-1} \left( \frac{1}{2} \right)^i [/mm] $

[mm] $\stackrel{(\*)}{=} [/mm] 1 + [mm] \frac{1- \frac{1}{2^n}}{1- \frac{1}{2}}$. [/mm]

Alles klar? :-)

Liebe Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]