matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenPartialbruchzerlegung des Cot
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Partialbruchzerlegung des Cot
Partialbruchzerlegung des Cot < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partialbruchzerlegung des Cot: Funktionalgleichung
Status: (Frage) beantwortet Status 
Datum: 12:23 So 23.05.2010
Autor: AbraxasRishi

Aufgabe
[mm]S_n(z)=\frac{1}{z}+\summe_{k=1}^n{\frac{2z}{z^2-k^2}}[/mm]

Summiert man [mm] \frac{1}{\frac{z}{2}+k}+\frac{1}{\frac{z+1}{2}+k}=\frac{2}{z+2k}+\frac{2}{z+2k+1} [/mm] von k=-n bis k=n so erhält man:

[mm] S_n(\frac{z}{2})+S_n(\frac{z+1}{2})=2S_{2n}(z)+\frac{2}{z+2n+1} [/mm]

Hallo!

Irgendwie habe ich den Eindruck die Behauptung stimmt nicht, denn [mm] 2S_{2n}(z) [/mm] entsteht doch schon nur durch  Anwendung der Summe auf den ersten Term rechts des Gleichheitszeichens. Aber es kann doch nicht sein, dass die Summe von [mm] \frac{2}{z+2k+1} [/mm] gerade [mm] \frac{2}{z+2n+1} [/mm] ist. Von mir aus gesehen fehlt da noch [mm] +2S_{2n-1}(z). [/mm]

Was sagt ihr dazu?

Vielen Dank im Voraus!

Angelika

        
Bezug
Partialbruchzerlegung des Cot: Antwort
Status: (Antwort) fertig Status 
Datum: 14:00 So 23.05.2010
Autor: ullim

Hi,

[mm] \bruch{2z}{z^2-k^2}=\bruch{1}{z+k}+\bruch{1}{z-k} [/mm]

Daraus folgt

[mm] S_n\left(\bruch{z}{2}\right)=\bruch{2}{z}+\summe_{k=1}^{n}\left(\bruch{2}{z+2k}+\bruch{2}{z-2k}\right) [/mm] und

[mm] S_n\left(\bruch{z+1}{2}\right)=\bruch{2}{z+1}+\summe_{k=1}^{n}\left(\bruch{2}{z+2k+1}+\bruch{2}{z-2k+1}\right) [/mm]

In der ersten Summe stehen die geraden und in der zweiten Summe die ungeraden Vertreter der Ausdrücke [mm] \bruch{2}{z+k} [/mm] bzw. [mm] \bruch{2}{z-k} [/mm] also kann man durch Umsortierung der Summen folgendes sehen

[mm] S_n\left(\bruch{z}{2}\right)+S_n\left(\bruch{z+1}{2}\right)=\bruch{2}{z}+\bruch{2}{z+1}+\summe_{k=2}^{2n}\bruch{2}{z+k}+\bruch{2}{z+2n+1}+\summe_{k=1}^{2n}\bruch{2}{z-k}=\bruch{2}{z}+\summe_{k=1}^{2n}\bruch{2}{z+k}+\summe_{k=1}^{2n}\bruch{2}{z-k}+\bruch{2}{z+2n+1} [/mm]

und das ist die zu beweisende Aussage.





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]