matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationPartialbruchzerlegung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integration" - Partialbruchzerlegung
Partialbruchzerlegung < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partialbruchzerlegung: Eindeutigkeit
Status: (Frage) überfällig Status 
Datum: 14:28 Do 26.07.2012
Autor: Peter_Pan2

Hallo!

Ich beschäftige mich gerade mit der Partialbruchzerlegung rationaler Funktionen und da gibt es für mich leider ein paar Unklarheiten..
Ich habe die "komplexe Version" der Partialbruchzerlegung (für beliebige komplexe rationale Funktionen) und versuche, damit auf die reelle Version zu kommen.
Dazu scheine ich aber die Eindeutigkeit der komplexen Zerlegung zu brauchen.
Bei einigen Eindeutigkeitsbeweisen wird vorausgesetzt, dass Zähler- und Nennerpolynom frei von gemeinsamen Nullstellen sind. Meiner Meinung nach ist diese Voraussetzung aber nicht nötig und zumindest die Existenz wird im Heuser - Band 1 auch ohne diese Einschränkung bewiesen. Ich würde die Eindeutigkeit folgendermaßen zeigen:

Ist P(x)/Q(x) die rationale Funktion und z eine Nullstelle von Q mit Vielfachheit k, dann denke ich mir eine zweite Zerlegung die sich von der ersten nur in den Koeffizienten in den Zählern der Partialbrüche unterscheidet. Ich setze beide Zerlegungen gleich, multipliziere beide Seiten mit (x - [mm] z)^{k} [/mm] und werte dann
an der Stelle z aus. Daraus würde die Gleichheit eines Koeffizienten folgen.

Sei dieser Koeffizient a. Dann subtrahiert man von beiden Seiten den Ausdruck
a/(x - [mm] z)^{k} [/mm] und führt denselben Prozess mit (x - [mm] z)^{k-1} [/mm] aus etc. So müsste man meiner Meinung nach auf die Gleichheit aller Koeffizienten kommen ohne Voraussetzung an die Nullstellen von P und Q.

Sehe ich das richtig oder muss ich irgendwas anderes noch berücksichtigen?

Viele Grüße,

Christof  


        
Bezug
Partialbruchzerlegung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 So 29.07.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]