matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationPartialbruchzerlegung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integration" - Partialbruchzerlegung
Partialbruchzerlegung < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partialbruchzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:37 Di 03.07.2012
Autor: Hejo

Aufgabe
Berechnen Sie mittels Partialbruchzerlegung das Integral [mm] \int\frac{x^2-2}{(x^2+4)*(x+1)}dx [/mm]

Hi,

Zunächst habe ich das Integral umgeschrieben: [mm] \int\frac{a}{(x^2+4)}+\frac{b}{(x+1)}dx. [/mm]
Dann habe ich die Inhalte unter den Integralen gleichgesetzt: [mm] \frac{x^2-2}{(x^2+4)*(x+1)}=\frac{a}{(x^2+4)}+\frac{b}{(x+1)} [/mm]
Nach Umformen erhalte ich: [mm] x^2-2=x(a+bx)+a+4b [/mm]
Und genau hier komm ich nich weiter...Vorschläge?!



        
Bezug
Partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:50 Di 03.07.2012
Autor: Diophant

Hallo,

> Und genau hier komm ich nich weiter...Vorschläge?!

Gerne: richtigen Ansatz verwenden. Der Zählergrad sollte bei quadratischen Nennerfaktoren mit komplexen Nullstellen um eins kleiner sein als der Nennergrad. Mit

[mm] \bruch{x^2-2}{(x^2+4)*(x+1)}=\bruch{ax+b}{(x^2+4)}+\bruch{c}{x+1} [/mm]

kommst du weiter. :-)


Gruß, Diophant

Bezug
                
Bezug
Partialbruchzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:07 Di 03.07.2012
Autor: Hejo

Vielen Dank,

jetzt habe ich die gleichung:
[mm] x^2-2=x^2(a+b)+x(a+b)+b+4c [/mm]

Ich erhalte aber nur 2 Bedingungen, und zwar: a+b=1 und b+4c=-2
Wie komme ich auf die dritte?

Bezug
                        
Bezug
Partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:29 Di 03.07.2012
Autor: Steffi21

Hallo

[mm] \bruch{x^2-2}{(x^2+4)*(x+1)}=\bruch{ax+b}{(x^2+4)}+\bruch{c}{(x+1)} [/mm]

[mm] \bruch{x^2-2}{(x^2+4)*(x+1)}=\bruch{(ax+b)*(x+1)}{(x^2+4)*(x+1)}+\bruch{c*(x^2+4)}{(x^2+4)*(x+1)} [/mm]

[mm] \bruch{x^2-2}{(x^2+4)*(x+1)}=\bruch{(ax+b)*(x+1)+c*(x^2+4)}{(x^2+4)*(x+1)} [/mm]

[mm] x^2-2=ax^2+ax+bx+b+cx^1+4c [/mm]

ich schreibe mal einen zusätzlichen Summanden auf

[mm] x^2+0x-2=(a+c)x^2+(a+b)x+b+4c [/mm]

jetzt der Koeffizientenvergleich für [mm] x^2, x^1 [/mm] und [mm] x^0 [/mm]

Steffi




Bezug
                                
Bezug
Partialbruchzerlegung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:43 Di 03.07.2012
Autor: Hejo

danke  jetzt hab ichs :)


Bezug
                                        
Bezug
Partialbruchzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:08 Di 03.07.2012
Autor: Hejo

Nochmal zur eigentlichen Aufgabe, dem integrieren:
Es gilt:

[mm] \int\frac{x^2-2}{(x^2+4)(x+1)}dx=\frac{6}{5}\int\frac{x-1}{(x^2+4)}dx-\frac{1}{5}\int\frac{1}{x+1}dx [/mm]

dabei ist [mm] \frac{1}{5}\int\frac{1}{x+1}dx=\frac{1}{5}ln(x+1)+C [/mm]
Wie verfahre ich denn beim ersten summanden, da komme ich mit dem logarithmus nicht weiter...?

Bezug
                                                
Bezug
Partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:15 Di 03.07.2012
Autor: MathePower

Hallo Hejo,

> Nochmal zur eigentlichen Aufgabe, dem integrieren:
>  Es gilt:
>  
> [mm]\int\frac{x^2-2}{(x^2+4)(x+1)}dx=\frac{6}{5}\int\frac{x-1}{(x^2+4)}dx-\frac{1}{5}\int\frac{1}{x+1}dx[/mm]
>  
> dabei ist
> [mm]\frac{1}{5}\int\frac{1}{x+1}dx=\frac{1}{5}ln(x+1)+C[/mm]
>  Wie verfahre ich denn beim ersten summanden, da komme ich
> mit dem logarithmus nicht weiter...?


Das Integral wird zunächst aufgespalten:

[mm]\int\frac{x-1}{(x^2+4)} \ dx=\int\frac{x}{(x^2+4)} \ dx-\int\frac{1}{(x^2+4)} \ dx[/mm]

Für das erste Integral verwendest Du die Substitution [mm]z=x^{2}+4[/mm].

Für das zweite Integral verwendest Du die Substitution [mm]x=2*\tan\left(z}\right)[/mm].


Gruss
MathePower

Bezug
                                                        
Bezug
Partialbruchzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:36 Di 03.07.2012
Autor: Hejo

danke für deine antwort!

> Für das erste Integral verwendest Du die Substitution
> [mm]z=x^{2}+4[/mm].

hier komm ich noch mit^^ und ich erhalte [mm] \frac{1}{2}ln(x^2+4) [/mm]

>  
> Für das zweite Integral verwendest Du die Substitution
> [mm]x=2*\tan\left(z}\right)[/mm].

Wie kommst du denn hier auf die Substituion und wie verhält sich du zu dx



Bezug
                                                                
Bezug
Partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:50 Di 03.07.2012
Autor: Steffi21

Hallo

[mm] \bruch{1}{2}*ln(x^2+4) [/mm] ist ok

[mm] \integral_{}^{}{\bruch{1}{x^2+4} dx} [/mm]

die Substitution
x:=2*tan(z) sind Erfahrungswerte, frei nach dem Motto, Übung, Übung nochmals Übung

[mm] \bruch{dx}{dz}=2+2*tan^2(z) [/mm]

[mm] dx=(2+2*tan^2(z))dz [/mm]

[mm] \integral_{}^{}{\bruch{1}{x^2+4} dx} [/mm]

[mm] =\integral_{}^{}{\bruch{1}{4*tan^2(z)+4}*(2+2*tan^2(z)) dz} [/mm]

[mm] =\integral_{}^{}{\bruch{2+2*tan^2(z)}{4*tan^2(z)+4} dz} [/mm]

[mm] =\integral_{}^{}{\bruch{1+tan^2(z)}{2*tan^2(z)+2} dz} [/mm]

[mm] =\integral_{}^{}{\bruch{1+tan^2(z)}{2*(1+tan^2(z))} dz} [/mm]

[mm] =\integral_{}^{}{\bruch{1}{2} dz} [/mm]

das Integral ist ein Kinderspiel, dann noch Rücksubstitution

Steffi



Bezug
                                                                        
Bezug
Partialbruchzerlegung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:08 Di 03.07.2012
Autor: Hejo

Vielen dank,
Nur noch eine frage:

> [mm]\bruch{dx}{dz}=2+2*tan^2(z)[/mm]
>  
> [mm]dx=(2+2*tan^2(z))dz[/mm]

das ist mir noch unklar...


Bezug
                                                                                
Bezug
Partialbruchzerlegung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:18 Di 03.07.2012
Autor: Hejo

Alles klar, hat sich erledigt:)

danke
hejo


als ergebnis habe [mm] \int\frac{1}{z}dz=\frac{1}{2}z+C. [/mm] Aus x=2tan(z) folgt [mm] z=arctan(\frac{x}{2}) [/mm] woraus folgt [mm] \int\frac{1}{x^2+4}dx=\frac{1}{2}arctan(\frac{x}{2}) [/mm]

somit ergibt sich für das Integral

[mm] \int\frac{x^2-2}{(x^2+4)(x+1)}dx=\frac{1}{2}arctan(\frac{x}{2})+\frac{3}{5}ln(x^2+4)-\frac{1}{5}ln(x+1)+C=\frac{1}{2}arctan(\frac{x}{2})+\frac{1}{5}(ln\frac{(x^2+4)^3}{x+1})+C [/mm]

ist das so richtig?

Bezug
                                                
Bezug
Partialbruchzerlegung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:17 Di 03.07.2012
Autor: Hejo

Eine Idee hätte ich noch:

[mm] \frac{3}{5}\int\frac{2x+2}{x^2+4}dx=\frac{3}{5}(\int\frac{2x}{x^2+4}dx-\int\frac{2}{x^2+4}dx) [/mm]

[mm] \int\frac{2x}{x^2+4}dx=ln(x^2+4)+C [/mm]

und

[mm] \int\frac{2}{x^2+4}dx=? [/mm] wie war das hier nochmal?



Bezug
        
Bezug
Partialbruchzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:51 Di 03.07.2012
Autor: Hejo

als ergebnis für das Integral habe ich:

[mm] \int\frac{x^2-2}{(x^2+4)(x+1)}dx=-\frac{3}{5}arctan(\frac{x}{2})+\frac{3}{5}ln(x^2+4)-\frac{1}{5}ln(x+1)+C=-\frac{3}{5}arctan(\frac{x}{2})+\frac{1}{5}(ln\frac{(x^2+4)^3}{x+1})+C [/mm]

ist das so richtig?

Bezug
                
Bezug
Partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:22 Mi 04.07.2012
Autor: schachuzipus

Hallo Hejo,


> als ergebnis für das Integral habe ich:
>  
> [mm]\int\frac{x^2-2}{(x^2+4)(x+1)}dx=-\frac{3}{5}arctan(\frac{x}{2})+\frac{3}{5}ln(x^2+4)-\frac{1}{5}ln(x+1)+C=-\frac{3}{5}arctan(\frac{x}{2})+\frac{1}{5}(ln\frac{(x^2+4)^3}{x+1})+C[/mm]

[daumenhoch]

>  
> ist das so richtig?

Ja!

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]