matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationPartialbruchzerlegung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integration" - Partialbruchzerlegung
Partialbruchzerlegung < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partialbruchzerlegung: Tipp
Status: (Frage) beantwortet Status 
Datum: 08:51 Do 19.05.2011
Autor: Elfe

Aufgabe
Man berechne das folgende unbestimmte Integral mit Partialbruchzerlegung:
[mm] \integral_{}^{}{\bruch{3x^{2}+2}{x(x^{2}+2)} dx} [/mm]

Hallo,

irgendwie komme ich hier nicht weiter, wie ich die Partialbruchzerlegung machen muss... Kann mir da irgendwer helfen? Ich hab grad leider gar keinen Ansatz mehr, kommt das daher, dass ich für [mm] x^{2}+2=0 [/mm] keine Lösung finden kann?

Vielleicht kann mir ja jemand einen Ansatz geben wie ich die Partialbruchzerlegung anfangen müsste, ich stehe nämlich gerade komplett auf dem Schlauch leider...

Grüße
Elfe

        
Bezug
Partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:58 Do 19.05.2011
Autor: kushkush

Hallo,


verwende:

[mm] $\frac{3x^{2}+2}{x(x^{2}+2)}= \frac{A}{x}+ \frac{B}{x+\sqrt{2}i}+\frac{C}{x-\sqrt{2}i}$ [/mm]



Gruss
kushkush

Bezug
                
Bezug
Partialbruchzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:03 Do 19.05.2011
Autor: Elfe

oooook.... also komplexe zahlen hatten wir nicht in der vorlesung bisher....
gibt es nicht noch eine andere möglichkeit?

Bezug
                        
Bezug
Partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:07 Do 19.05.2011
Autor: Diophant

Hallo,

> oooook.... also komplexe zahlen hatten wir nicht in der
> vorlesung bisher....
> gibt es nicht noch eine andere möglichkeit?  

ja: gewöhnlich verwendet man für solche quadratischen Faktoren mit komplexen Nullstellen den Ansatz

[mm] \frac{Ax+B}{px^2+qx+r} [/mm]

Gruß, Diophant

Bezug
        
Bezug
Partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:05 Do 19.05.2011
Autor: reverend

Hallo Elfe,

> Man berechne das folgende unbestimmte Integral mit
> Partialbruchzerlegung:
> [mm]\integral_{}^{}{\bruch{3x^{2}+2}{x(x^{2}+2)} dx}[/mm]
>  Hallo,
>
> irgendwie komme ich hier nicht weiter, wie ich die
> Partialbruchzerlegung machen muss... Kann mir da irgendwer
> helfen? Ich hab grad leider gar keinen Ansatz mehr, kommt
> das daher, dass ich für [mm]x^{2}+2=0[/mm] keine Lösung finden
> kann?

Die gibt es im Reellen auch nicht. Der Ansatz von kushkush setzt voraus, dass hier komplex integriert wird.

> Vielleicht kann mir ja jemand einen Ansatz geben wie ich
> die Partialbruchzerlegung anfangen müsste, ich stehe
> nämlich gerade komplett auf dem Schlauch leider...

Das Nennerpolynom kann aus linearen und quadratischen Faktoren bestehen; hier hast Du eben beides.

Der Ansatz ist dann [mm] \bruch{A}{x}+\bruch{Bx+C}{x^2+2} [/mm]

Schau mal []hier.

Grüße
reverend


Bezug
                
Bezug
Partialbruchzerlegung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:11 Do 19.05.2011
Autor: Elfe

super, vielen dank!! das wusste ich so noch gar nicht, komisch...


gruß
elfe

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]