matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheoriePartialbruchzerlegung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integrationstheorie" - Partialbruchzerlegung
Partialbruchzerlegung < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partialbruchzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:13 Mi 18.05.2011
Autor: mathefreak89

Aufgabe
[mm] \integral_{}^{}\bruch{1}{t^3+3t^2-4} \, [/mm] dx

Hallöchen:)

Obrige Aufgabe soll mit Hilfe der Partialbruchzerlegung gelöst werden.

Da wir eine echt gebrochenrationale Funktion haben habe ich direkt den nenner in Linearfaktoren zerlegt:

[mm] t_1=1 [/mm] also (t-1)

und die Polynomdivision liefert bei mir [mm] t^2+4t+4=(t+2)^2 [/mm]

Somit komme ich zu:

[mm] \bruch{1}{t^3+3t^2-4}=\bruch{A}{t-1}+\bruch{B}{t+2}+\bruch{C}{(t+2)^2} [/mm]

Die rehcte Seite bringe ich auf den gleichen Nenner was zu:

[mm] 1=A(t+2)(t+2)^2+B(t-1)(t+2)^2+C(t-1)(t+2) [/mm]

Was mich zu

[mm] 1=(A+B)t^3+(6A+3B+C)t^2+(12A+C)t+8A-4B-2C [/mm]

bringt und zum folgenden Gleichungssystem durch Koeffizientenvergleich:

A+B=0
6A+3B+C=0
12A+C=0
8A-4B-2C=1

Hier fängt mein Problem an komme irgendwie nicht auf die richtigen Werte von A ,B und C?

Ist das ganze bis zu dem Punkt richtig=??

Danke euch mfg mathefreak





        
Bezug
Partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:20 Mi 18.05.2011
Autor: schachuzipus

Hallo mathefreak89,

> [mm]\integral_{}^{}\bruch{1}{t^3+3t^2-4} \,[/mm] dx
> Hallöchen:)
>
> Obrige Aufgabe soll mit Hilfe der Partialbruchzerlegung
> gelöst werden.
>
> Da wir eine echt gebrochenrationale Funktion haben habe ich
> direkt den nenner in Linearfaktoren zerlegt:
>
> [mm]t_1=1[/mm] also (t-1)
>
> und die Polynomdivision liefert bei mir [mm]t^2+4t+4=(t+2)^2[/mm] [ok]
>
> Somit komme ich zu:
>
> [mm]\bruch{1}{t^3+3t^2-4}=\bruch{A}{t-1}+\bruch{B}{t+2}+\bruch{C}{(t+2)^2}[/mm] [ok]
>
> Die rehcte Seite bringe ich auf den gleichen Nenner was
> zu:
>
> [mm]1=A(t+2)(t+2)^2+B(t-1)(t+2)^2+C(t-1)(t+2)[/mm] [notok]

Der (kleinste) gemeinsame Nenner ist doch [mm](t-1)(t+2)^2[/mm], was dem Nenner linkerhand entspricht. Und den willst du ja haben, damit du die Zähler auf beiden Seiten vergeichen kannst.

Erweitere also den ersten Bruch mit [mm](t+2)^2[/mm], den zweiten Bruch mit [mm](t-1)(t+2)[/mm] und den letzten Bruch mit [mm](t-1)[/mm], was dich zu

[mm]1=A(t+2)^2+B(t-1)(t+2)+C(t-1)[/mm] führt ...

>
> Was mich zu
>
> [mm]1=(A+B)t^3+(6A+3B+C)t^2+(12A+C)t+8A-4B-2C[/mm]
>
> bringt und zum folgenden Gleichungssystem durch
> Koeffizientenvergleich:
>
> A+B=0
> 6A+3B+C=0
> 12A+C=0
> 8A-4B-2C=1
>
> Hier fängt mein Problem an komme irgendwie nicht auf die
> richtigen Werte von A ,B und C?
>
> Ist das ganze bis zu dem Punkt richtig=??

Leider nicht, der Ansatz war aber richtig!

>
> Danke euch mfg mathefreak

Gruß

schachuzipus

Bezug
                
Bezug
Partialbruchzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:49 Mi 18.05.2011
Autor: mathefreak89

okay bin jetz auf die Gleiche form gekommen wie du allerdings bekomme ich es immer noch nich hin das Gleichungssystem zu lösen.
Ich weiß auch nich was los is  hab für
[mm] (A+B)t^2+(4A+B+C)t+4A-2B-C [/mm]

A+B=0
4A+B+C=0
4A-2B-C=1

folgende Lösungen raus B=-1/3  C=0   A 3/2



Bezug
                        
Bezug
Partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:53 Mi 18.05.2011
Autor: schachuzipus

Hallo nochmal,

> okay bin jetz auf die Gleiche form gekommen wie du
> allerdings bekomme ich es immer noch nich hin das
> Gleichungssystem zu lösen.
> Ich weiß auch nich was los is hab für
> [mm](A+B)t^2+(4A+B+C)t+4A-2B-C[/mm] [ok]
>
> A+B=0 [ok]
> 4A+B+C=0 [ok]
> 4A-2B-C=1 [ok]
>
> folgende Lösungen raus B=-1/3 C=0 A 3/2

Das stimmt nicht, da musst du nochmal nachrechnen.

Löse die erste Gleichung meinetwegen nach B auf, setze das in die zweite ein und löse nach C auf.

Dann setze B aus 1) und C aus 2) in die dritte Gleichung ein, dann hast du $A$

Damit in die erste Gleichung, um B abzugreifen ...

Gruß

schachuzipus


Bezug
                                
Bezug
Partialbruchzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:29 Mi 18.05.2011
Autor: mathefreak89

Hab jetz als Stammfunktion

[mm] F(t)=\bruch{1}{9}*ln(t-1)-\bruch{1}{9}ln(t+2)+\bruch{1}{3}*\bruch{1}{t+2} [/mm] raus

mit A=1/9 B=-1/9 und C=-1/3

Ist das so Richtig=?

Und ist [mm] \bruch{1}{(t+2)^2} [/mm]  ein Stammintegral?? habs umgeschrieb zu [mm] (t+2)^{-2} [/mm] und dann integriert geht das auch schneller /einfacher??

danke dir mathefreak

Bezug
                                        
Bezug
Partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:32 Mi 18.05.2011
Autor: fred97

Alles korrekt

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]