matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLaplace-TransformationPartialbruchzerlegung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Laplace-Transformation" - Partialbruchzerlegung
Partialbruchzerlegung < Laplace-Transformation < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Laplace-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partialbruchzerlegung: Quadratische Form
Status: (Frage) beantwortet Status 
Datum: 15:49 Sa 22.01.2011
Autor: raised.fist

Aufgabe
Führen Sie eine Partialbruchzerlegung durch.
[mm] F(s)=\bruch{2s-1}{(s^{2}+2)(s+1)} [/mm]


Hi,

Diese Aufgabe habe ich in der Vorlesung mitgeschrieben. Jetzt wollte ich sie nachrechnen aber komme in einem Punkt nicht weiter.
Unser Ansatz lautet:

[mm] F(s)=\bruch{2s-1}{(s^{2}+2)(s+1)} [/mm] = [mm] \bruch{As+B}{s^{2}+2}+\bruch{C}{s+1} [/mm]

in der nächsten Zeile steht dann direkt C=-1, jedoch habe ich keinen Schimmer wie man auf dieses -1 gekommen ist.

Wäre nett wenn mir jemand die gemachten Schritte erläutern könnte.

        
Bezug
Partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:19 Sa 22.01.2011
Autor: schachuzipus

Hallo raised.fist,


> Führen Sie eine Partialbruchzerlegung durch.
>  [mm]F(s)=\bruch{2s-1}{(s^{2}+2)(s+1)}[/mm]
>  
> Hi,
>  
> Diese Aufgabe habe ich in der Vorlesung mitgeschrieben.
> Jetzt wollte ich sie nachrechnen aber komme in einem Punkt
> nicht weiter.
>  Unser Ansatz lautet:
>  
> [mm]F(s)=\bruch{2s-1}{(s^{2}+2)(s+1)}[/mm] = [mm]\bruch{As+B}{s^{2}+2}+\bruch{C}{s+1}[/mm] [ok]
>  
> in der nächsten Zeile steht dann direkt C=-1, jedoch habe
> ich keinen Schimmer wie man auf dieses -1 gekommen ist.
>
> Wäre nett wenn mir jemand die gemachten Schritte
> erläutern könnte.

Nun, du machst rechterhand gleichnamig:

[mm]=\frac{(As+b)(s+1)+C(s^2+2)}{(s^2+2)(s+1)}[/mm] und sortierst im Zähler nach Potenzen von [mm]s[/mm]

[mm]=\frac{(A+C)s^2+(A+B)s+(B+2C)}{(s^2+2)(s+1)}[/mm]

Nun mache in den Zählern rechter- und linkerhand einen Koeffizientenvergleich:

Das liefert:

(1) [mm]A+C=0[/mm]

(2) [mm]A+B=2[/mm]

(3) [mm]B+2C=-1[/mm]

Wenn du das löst, sollte sich (u.a.) [mm]C=-1[/mm] ergeben ...

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Laplace-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]