matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesPartialbruchzerlegung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Sonstiges" - Partialbruchzerlegung
Partialbruchzerlegung < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partialbruchzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:16 So 07.11.2010
Autor: mathiko

Hallo ihr alle!

Ich hänge gerade etwas an einer Partialbruchzerlegung, da wir diese nie in der Schule behandelt haben.
Bei dieser Aufgabe komme ich  nicht weiter:

[mm] \bruch{x^2-y^2}{(x^2+y^2)^2} [/mm] soll gleich [mm] \bruch{1}{(x^2+y^2)}-\bruch{2y^2}{(x^2+y^2)^2} [/mm] sein. Zumindest sagt dies der Rechner.
Außer folgendem ist mir noch nichts eingefallen, um auf obiges Ergebnis zu kommen:
[mm] \bruch{A}{(x^2+y^2)}+\bruch{B}{(x^2+y^2)}=(A+B)x^2+(A+B)y^2=x^2-y^2 [/mm]
Nach Koeffizientenvergleich müsste (A+B) ja sowohl +1 als auch -1 sein...

Was mache ich falsch?
Grüße von mathiko


        
Bezug
Partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:44 So 07.11.2010
Autor: Al-Chwarizmi


> [mm]\bruch{x^2-y^2}{(x^2+y^2)^2}[/mm] soll gleich
> [mm]\bruch{1}{(x^2+y^2)}-\bruch{2y^2}{(x^2+y^2)^2}[/mm] sein.

> Zumindest sagt dies der Rechner.
> Außer folgendem ist mir noch nichts eingefallen, um auf
> obiges Ergebnis zu kommen:

  

> [mm]\bruch{A}{(x^2+y^2)}+\bruch{B}{(x^2+y^2)}=(A+B)x^2+(A+B)y^2=x^2-y^2[/mm]      [haee]

> Nach Koeffizientenvergleich müsste (A+B) ja sowohl +1 als
> auch -1 sein...     [kopfschuettel]

  

> Was mache ich falsch?
>  Grüße von mathiko


Hallo mathiko,

dies geht recht einfach und hat eigentlich kaum etwas
mit "Partialbruchzerlegung" zu tun:

     $\ [mm] \bruch{x^2-y^2}{(x^2+y^2)^2}\ [/mm] =\ [mm] \bruch{x^2+y^2-2*y^2}{(x^2+y^2)^2}\ [/mm] =\ [mm] \bruch{x^2+y^2}{(x^2+y^2)^2}-\bruch{2*y^2}{(x^2+y^2)^2}$ [/mm]

Nun kann man den ersten Bruch noch kürzen.



LG   Al-Chw.

  


Bezug
                
Bezug
Partialbruchzerlegung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:53 So 07.11.2010
Autor: mathiko

Hallo Al-Chwarizmi!

Da habe ich den Wald vor lauter Bäumern nicht gesehnen.
Vielleicht sollte ich mal einen Tag was anderes als Mathe machen und ich sollte nicht Alles glauben, was der Rechner sagt.

Danke für´s Augen öffnen!!!!!

Viele Grüße von mathiko

Bezug
                        
Bezug
Partialbruchzerlegung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:07 So 07.11.2010
Autor: Al-Chwarizmi


> Da habe ich den Wald vor lauter Bäumern nicht gesehnen.
>  Vielleicht sollte ich mal einen Tag was anderes als Mathe
> machen

    das ist manchmal eine gute Idee ;-)

> und ich sollte nicht Alles glauben, was der Rechner sagt.  [haee]

    wenigstens im vorliegenden Beispiel kannst du ihn aber
    nicht tadeln, denn seine Umformung war doch korrekt ...

Schönen Sonntag !

Al-Chw.


Bezug
                                
Bezug
Partialbruchzerlegung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:21 So 07.11.2010
Autor: mathiko

Hi!
Das Ergebnis war schon richtig, aber es stand "Partialbruchzerlegung" darüber.

Naja, nach dieser Aufgabe mache ich erstmal Schluss für heute ;-)

Gruß
mathiko


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]