matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungPartialbruchzerlegung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - Partialbruchzerlegung
Partialbruchzerlegung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partialbruchzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:30 Mo 05.07.2010
Autor: cruz

Aufgabe
[mm] \integral \bruch{1}{x^2-6x+9}\, dx [/mm]

Hallo,
ich soll dieses Integral lösen und habe es mit Partialbruchzerlegung versucht, komme aber beim Koeffizientenvergleich nicht mehr weiter.

Mein letzter Schritt ist der Folgende:
[mm] 0 \cdot x + 1 = x \cdot (A+B) - 3A - 3B [/mm]

Nun erhalte ich für [mm] 0 = A+B \Rightarrow B = -A[/mm] und beim Einsetzen in die zweite Gleichung [mm] 1 = -3A - 3B [/mm] komme ich dann auf [mm] 1 = 0 [/mm].

Würde mich über eine Antwort sehr freuen.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Partialbruchzerlegung: binomische Formel
Status: (Antwort) fertig Status 
Datum: 16:33 Mo 05.07.2010
Autor: Roadrunner

Hallo cruz,

[willkommenmr] !!


Leider zeigst Du nicht, wie Du genau auf Deine Ergebnisse kommst.

Jedenfalls ist hier Partialbruchzerlegung gar nicht erforderlich.

Bedenke, dass gilt:
[mm] $$x^2-6*x+9 [/mm] \ = \ [mm] (x-3)^2$$ [/mm]

Gruß vom
Roadrunner


Bezug
                
Bezug
Partialbruchzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:40 Mo 05.07.2010
Autor: cruz

Mein bisheriger Weg war:

[mm] \bruch{1}{x^2-6x+9} = \bruch{A}{x-3} + \bruch{B}{x-3} [/mm]

Hab dann mit dem Hauptnenner [mm] (x-3)^2 [/mm] durchmultipliziert und die Zeile aus meinem vorherigen Post erhalten.

Bezug
                        
Bezug
Partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:49 Mo 05.07.2010
Autor: schachuzipus

Hallo cruz,

> Mein bisheriger Weg war:
>  
> [mm]\bruch{1}{x^2-6x+9} = \bruch{A}{x-3} + \bruch{B}{x-3}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

[notok]

Das ist der falsche PBZ-Ansatz.

Hier hast du doch eine doppelte reelle Nullstelle.

Richtiger Ansatz:

$\frac{1}{x^2-6x+9}=\frac{1}{(x-3)^2}=\frac{A}{x-3}+\frac{B}{(x-3)^2$

Was aber zu nichts führt außer $A=0$ und $B=1$

Wie mein Vorredner sagte, ist PBZ kein guter Weg.

Besser direkt integrieren oder substituieren mit $z=z(x):=x-3$ ...

>  
> Hab dann mit dem Hauptnenner [mm](x-3)^2[/mm] durchmultipliziert und
> die Zeile aus meinem vorherigen Post erhalten.


Gruß

schachuzipus

Bezug
                                
Bezug
Partialbruchzerlegung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:51 Mo 05.07.2010
Autor: cruz

Danke euch beiden!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]