matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraPartialbruchzerlegung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Partialbruchzerlegung
Partialbruchzerlegung < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partialbruchzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:47 So 01.05.2005
Autor: pisty

Hallo,

habe folgende Funktion gegeben:

[mm] \bruch{3x^4-7x^3+3x^2-5x+6}{2x^3-7x^2+x+10} [/mm]

die Fragen dazu sind:
a) für welche [mm] x\in\IR\ [/mm]  ist f nicht definiert
    meine Antwort: für x1=-1, x2=2, x3=5/2

b) zerlegen Sie f in eine Summe von Partialbrüchen, geben Sie die Asymptoden an .... und skizzieren sie die Fkt.

dazu ... hab ich erstmal nen Polynomdivision gemacht

und bekomme raus
[mm] \bruch{3x^4-7x^3+3x^2-5x+6}{2x^3-7x^2+x+10} [/mm] = [mm] \bruch{3}{2}x +\bruch{7}{4} [/mm] + Rest [mm] \bruch{55}{4x^2} [/mm] + [mm] \bruch{-87}{4x}-10 [/mm]

naja -weiß zwar nicht wozu ich das brauch.... aber vielleicht kanns mir einer erklären


als nächstes hab ich die Formel fürPartialbrüche angewandt

[mm] \bruch{A1}{x+1} [/mm] + [mm] \bruch{A2}{x-2} [/mm] + [mm] \bruch{A3}{x-2,5} [/mm] + [mm] \bruch{Bx+C}{x^2+ax+b} [/mm]

was setz ich für das  [mm] \bruch{Bx+C}{x^2+ax+b} [/mm] ein? und wie mache ich weiter?

c) gesucht ist zudem der links-und rechtsseitige Grenzwert von f - vielleicht kann mir das nochmal kurz einer erklären


vielen Dank schonmal für eure Bemühungen

pisty





        
Bezug
Partialbruchzerlegung: Hinweis
Status: (Antwort) fertig Status 
Datum: 21:09 So 01.05.2005
Autor: MathePower

Hallo,

> was setz ich für das  [mm]\bruch{Bx+C}{x^2+ax+b}[/mm] ein? und wie
> mache ich weiter?

diesen Bruch brauchst Du nicht, da alle Nullstellen des Nennerpolynoms in [mm]\IR[/mm] liegen.

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]