matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisPartialbruchzerlegung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Schul-Analysis" - Partialbruchzerlegung
Partialbruchzerlegung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partialbruchzerlegung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:17 Mi 09.02.2005
Autor: elimin8tor

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hi, ich soll zu morgen erklären können wie man  [mm] \bruch{2x^2+1}{x^3+2x^2+x} [/mm] mittels einer Partialbruchzerlegung integrieren kann.

Zuerst habe ich eine Aufteilung des Bruchs vorgenommen:

[mm] \bruch{2x}{(x-1)^2} [/mm] +  [mm] \bruch{1}{x^3 + 2x^2 + x} [/mm]

und bin dann für den ersten Teil auf

[mm] \bruch{2x}{(x-1)^2}= \bruch{A}{(x-1)} [/mm] +  [mm] \bruch{B}{(x-1)} [/mm] =  [mm] \bruch{A(x-1)+B(x-1)}{(x-1)²} [/mm]
gekommen, woraus folgt:

2x = A(x-1) + b(x-1)

das bedeutet aber letztendlich, dass  [mm] \bruch{2}{3}= [/mm] A+B

Wie komme ich jetzt weiter?

        
Bezug
Partialbruchzerlegung: Fehler + Erläuterung
Status: (Antwort) fertig Status 
Datum: 18:24 Mi 09.02.2005
Autor: Max

Hallo,

ich meine, dass deine Zerlegung falsch ist. Für den Nenner gilt ja

[mm] $x^3+2x^2+x=x\cdot\left(x^2+2x+1\right)=x (x+1)^2$ [/mm]

D.h. deine Zerlegung in

[mm] $\frac{2x^2+1}{x^3+2x^2+x}=\frac{2x}{(x\red{-}1)^2}+\frac{1}{x^3+2x^2+x}$ [/mm] ist falsch.

Du kannst aber einfach im Nenner [mm] $(x\red{+}1)^2$ [/mm] setzten um es richtig zu machen. Allerdings macht es keinen Sinn bei der Zerlegung des ersten Bruchs den gleichen Nenner zu wählen, weil dann ja gelten würde [mm] $\frac{2x}{(x+1)^2}=\frac{A+B}{x+1}$. [/mm] Einer der beiden Nenner muss [mm] $(x+1)^2$ [/mm] sein, sonst klappt es nicht!

Wenn du dann $A$ und $B$ bestimmen willst kommst du auf  zwei Gleichungen, jeweils für die Koeffizienten von [mm] $x^1=x$ [/mm] bzw. [mm] $x^0=1$. [/mm]

Gruß Brackhaus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]