matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationPartialbruchzerlegung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integration" - Partialbruchzerlegung
Partialbruchzerlegung < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partialbruchzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:12 Fr 25.01.2008
Autor: bore

Aufgabe
[mm] \integral (4x^3)/(x^3+2x^2-x-2) [/mm]

Ich habe diese Aufgabe und muss sie durch Partialbruchzerlegung lösen.

Habe folgende Nullstellen gefunden.
x1=-1
x2=-2
x3=1
A/(x+1)+B/(x+2)+C/(x-1)=A(x+2)(x-1)+B(x+1)(x-1)+C(x+1)(x+2)

Nun wie geht man nun weiter? oder kann man das auch anders lösen?


        
Bezug
Partialbruchzerlegung: Koeffizientenvergleich
Status: (Antwort) fertig Status 
Datum: 14:45 Fr 25.01.2008
Autor: Roadrunner

Hallo bore!

Bevor Du hier die  MBPartialbruchzerlegung durchführst, musst Du eine MBPolynomdivison, um den Zählergrad echt kleiner als den Nennergrad werden zu lassen.

Bringe dann die drei Partialbrüche durch Erweitern auf einen Bruch und fasse im Zähler zusammen.

Anschließend führst Du dann einen Koeffizientenvergleich durch mit dem neuen Zähler.


Gruß vom
Roadrunner


Bezug
        
Bezug
Partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:15 Fr 25.01.2008
Autor: maddhe

Dein Ansatz ist schon richtig..
Wenn du die 4 vorher aus dem Integral gezogen hast und den Anfang für die Partialbruchzerlegung gemacht hast, steht da [mm] \bruch{A(x-1)(x+1)+B(x+1)(x+2)+C(x^{2}-1)}{(x+1)(x-1)(x+2)}=\bruch{x^{3}}{(x+1)(x-1)(x+2)} [/mm] und aufgelöst [mm] x^{2}(A+B+C)+x(A+3B)+(2B-2A-C)=x^3 [/mm]
Jetzt kannst du sagen, dass [mm] \vmat{ A+B+C=x \\ A+3B=0 \\ 2B-2A-C=0 } [/mm] (ich glaube, es geht auch anders, aber so funktionierts auf jeden Fall und ist nicht sehr schwer, da wir ja Grad(Nenner)>Grad(Zähler) haben wollen und das mit der Annahme von [mm] A+3B=x^{2} [/mm] oder [mm] 2B-2A-C=x^{3} [/mm] später noch mehr Umformungen verlangt als wir eh noch vor uns haben...)
Mit dem obigen Gleichungssystem bekommst du Werte raus, sodass du in jedem Bruch Grad(Nenner)=Grad(Zähler)=1 hast.. jetzt brauchst du die Brüche nur noch umschreiben und bekommst am Ende das, was auch Derive ausspuckt: [mm] \bruch{-8}{3(x+2)} [/mm] + [mm] \bruch{1}{6(x-1)} [/mm] + [mm] \bruch{1}{2(x+1)} [/mm] + 1

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]