matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraPartialbruchzerlegung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Algebra" - Partialbruchzerlegung
Partialbruchzerlegung < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partialbruchzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:43 Fr 29.09.2006
Autor: stepi1974

Aufgabe
[mm] r02(x)=\bruch{1}{x(x+1)} [/mm]

Wie löse ich diese Aufgabe ?

Bestimme die Partialbruchzerlegung der rationalen Fkt. r02?

        
Bezug
Partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:53 Fr 29.09.2006
Autor: riwe

da machst du den unbestimmten ansatz:
[mm] r=\frac{A}{x}+\frac{B}{x+1} [/mm]
und führst einen koeffizientenvergleich durch, das ergibt A und B.

Bezug
                
Bezug
Partialbruchzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:09 Fr 29.09.2006
Autor: stepi1974

wollte Fragen, ob wfolgender Lösungsweg richtig ist?

A/x + b/(x+1)= 1/(x(x+1))

beide Seiten mit x(x+1) multiplizieren


das ergibt A(x+1)+Bx=1

Ax+A+Bx=1
x(A+B)+A=1

wie kriege ich nun A und B raus? Was setze ich für x ein?

Bezug
                        
Bezug
Partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:18 Fr 29.09.2006
Autor: Karl_Pech

Hallo stepi1974,


> wollte Fragen, ob folgender Lösungsweg richtig ist?
> [..]


Ja, es stimmt. [ok]


>  x(A+B)+A=1
>  
> wie kriege ich nun A und B raus? Was setze ich für x ein?


Du mußt [mm]x[/mm] so setzen, daß eines der Unbekannten wegfällt. Setze z.B. [mm]x := 0[/mm]. Dann ist [mm]A = 1[/mm]. Setze diesen Wert von [mm]A[/mm] wieder in deine Gleichung ein, subtrahiere auf beiden Seiten, teile durch [mm]x[/mm] und du bekommst dein [mm]B[/mm].



Grüße
Karl





Bezug
                                
Bezug
Partialbruchzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:37 Fr 29.09.2006
Autor: stepi1974

Wenn x=0, dann ist A logischerweise 1

will ich nun B ausrechnen, was setze ich für x ein? Habe ja schließlich noch 2 unbekannte.
Setze ich x=0 bei 1=Ax+A+Bx ein, dann kürzt sich mit x=0 die Variable B (....+Bx) mit raus?

Bezug
                                        
Bezug
Partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:49 Fr 29.09.2006
Autor: Karl_Pech

Also ich führe mal mein eigenes "Kochrezept" aus:


[mm]A = 1[/mm], also gilt: [mm]x(1+B)+1=1 \gdw x(1+B) = 0.[/mm]


Und jetzt teile durch [mm]x[/mm] auf beiden Seiten und forme nach [mm]B[/mm] um. (Setzt du das (zur Probe) in deine Ausgangsbruchterme ein, so siehst du, daß du richtig gerechnet hast.)




Bezug
                                        
Bezug
Partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:13 Fr 29.09.2006
Autor: riwe

also "mein" kochrezept:
[mm] \frac{1}{x(x+1)}=\frac{A}{x}+\frac{B}{x+1} [/mm]
auf gemeinsamen nenner bringen:
1= A + Ax + Bx
koeffizientenvergleich
[mm] x^{0}: [/mm] A = 1
[mm] x^{1}: [/mm] A + B = 0 [mm] \to [/mm] B = -1

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]