matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenPartialbruchzerlegung!
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Rationale Funktionen" - Partialbruchzerlegung!
Partialbruchzerlegung! < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partialbruchzerlegung!: Ergebnisse
Status: (Frage) beantwortet Status 
Datum: 20:13 Mo 22.05.2006
Autor: night

Aufgabe
f(x) = [mm] x^3-2x-2/x^2+x-2 [/mm]

hi,
wollte fragen ob diese ergebnisse richtig sind!

A= -1

B= 2

mfg
Daniel

danke!

        
Bezug
Partialbruchzerlegung!: Zwischenschritte?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:28 Mo 22.05.2006
Autor: Loddar

Hallo Daniel!


Hier ist leider überhaupt nicht zu erkennen, was Du gerechnet hast.

Hast Du zunächst eine MBPolynomdivision durchgeführt? Wie lauten denn Deine beiden Partialbrüche?


Gruß
Loddar


Bezug
                
Bezug
Partialbruchzerlegung!: Lösungsansatz
Status: (Frage) beantwortet Status 
Datum: 20:36 Mo 22.05.2006
Autor: night

zunächst habe ich eine Polynomdivision durchgeführt
dann habe ich x-1+     [mm] x-4/x^2+x-2 [/mm] rausgehabt!

Nenner Pq-Formel:
linear Faktoren dann (x-1)(x+2)

A/x + B/x   durch die linear Faktoren. auf den gleichen Nenner gebracht und durch die division den Koeffizientenvergleich gemacht

gleichung dann:

A + B = 1
2A - B = -4

..

mfg Daniel


Bezug
                        
Bezug
Partialbruchzerlegung!: Stimmt soweit ...
Status: (Antwort) fertig Status 
Datum: 20:43 Mo 22.05.2006
Autor: Loddar

Hallo Daniel!


Wenn Du hier ...

> A/x + B/x   durch die linear Faktoren.

... noch schreibst:  [mm] $\bruch{A}{x\red{-1}}+\bruch{B}{x\red{+2}}$ [/mm] , hast Du alles richtig gemacht! [ok]


Gruß
Loddar


Bezug
                                
Bezug
Partialbruchzerlegung!: Ergebnisse
Status: (Frage) beantwortet Status 
Datum: 20:51 Mo 22.05.2006
Autor: night

Aufgabe
...

bin leider mit dem formeleditor noch nicht so vertraut!

schreibe morgen eine klausur deswegen wollte ich noch ein paar aufgaben zu partialbruchzerlegung rechnen!

wie sind denn die werte für A
und
B

?(siehe Thread 1)

mfg Daniel
danke

Bezug
                                        
Bezug
Partialbruchzerlegung!: Schon als richtig erklärt!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:57 Mo 22.05.2006
Autor: Loddar

Hallo Daniel!


> wie sind denn die werte für A  und  B ?(siehe Thread 1)

Welche meinst Du jetzt genau? Die oben angegebenen mit $A \ = \ -1$ und $B \ = \ 2$ ? Die sind richtig! Diese Ergebnisse hatte ich Dir doch schon bestätigt.

Gruß
Loddar


Bezug
                                                
Bezug
Partialbruchzerlegung!: Vielen Dank+Frage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:07 Mo 22.05.2006
Autor: night

wie mathematisch ist ein Ingineur studium:)?
mfg

Bezug
                                                        
Bezug
Partialbruchzerlegung!: Meine Erfahrung / Einschätzung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:14 Mo 22.05.2006
Autor: Loddar

Hallo Daniel!


Ich denke mal, dass es da deutliche Unterschiede macht, ob man das Studium an einer Universität oder wie ich "nur" ;-) an einer Fachhochschule macht.

An der Uni sollte man die Mathematik nicht unterschätzen, da dort viele "Fachgesetze" auch mathematisch hergeleitet werden.

An der Fachhochschule sind diese Bereiche bei weitem nicht so mathematisch tiefgründig. Aber auch hier muss man sich schon mit Mathe auseinandersetzen.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]