matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisPartialbruchzerlegung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Komplexe Analysis" - Partialbruchzerlegung
Partialbruchzerlegung < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partialbruchzerlegung: Stimmt meine Lösung?
Status: (Frage) beantwortet Status 
Datum: 21:13 Fr 19.05.2006
Autor: Milka_Kuh

Aufgabe
a,b [mm] \in \IC [/mm] \  [mm] \partial [/mm] E, E die Einheitskreisscheibe, a [mm] \not= [/mm] b.

Berechne:    [mm] \integral_{\partial E}^{}{ \bruch{1}{(z-a)(z-b)} dz} [/mm]

Hallo,

ich habe diese Aufgabe bereits fertig gerechnet, und poste hier nur mal die Lösung, um mich zu vergewissern, dass es auch stimmt. Kann sich bitte jemand meine Lösung anschauen? Danke!

[mm] \integral_{\partial E}^{}{ \bruch{1}{(z-a)(z-b)} dz} [/mm]

Zuerst hab ich mit Partialbruchzerlegung das Ding zerlegt:

[mm] \bruch{1}{(z-a)(z-b)} [/mm] =  [mm] \bruch{c_{11}}{(z-a)}+ \bruch{c_{12}}{(z-b)} [/mm]

Also: 1= [mm] c_{11} [/mm] (z-b) + [mm] c_{12} [/mm] (z-a)

Nullstellen sind z= a und z=b, also: [mm] c_{11} [/mm] =  [mm] \bruch{1}{a-b} [/mm] und  [mm] c_{12}=\bruch{1}{b-a} [/mm]

Daraus kann ich jetzt schreiben:

[mm] \integral_{\partial E}^{}{ \bruch{1}{(z-a)(z-b)} dz} [/mm] = [mm] \integral_{\partial E}^{}{ \bruch{1}{(a-b)(z-a)}dz} [/mm] + [mm] \integral_{\partial E}^{ }{\bruch{1}{(b-a)(z-b)}dz} [/mm] =  [mm] \bruch{1}{a-b} \integral_{\partial E}^{ }{\bruch{1}{(z-a)} dz} [/mm] -  [mm] \bruch{1}{a-b}\integral_{\partial E}^{}{\bruch{1}{(z-b)} dz} [/mm] =  [mm] \bruch{1}{a-b}( \integral_{\partial E}^{ }{\bruch{1}{(z-a)} dz}- \integral_{\partial E}^{}{ \bruch{1}{(z-b)} dz})= \bruch{1}{a-b} [/mm] [log (z-a) - [mm] log(z-b)]^{2\pi}, [/mm] wobei die untere Integrationsgrenze die 0 ist.

Also eingesetzt ergibt:

[mm] \bruch{1}{a-b}[log(2\pi-a)-log(2\pi-b)-log(-a)+log(-b)] [/mm] =  [mm] \bruch{1}{a-b} [/mm] (log( [mm] \bruch{2\pi-a}{2\pi-b})+ [/mm] log( [mm] \bruch{b}{a}))) [/mm]

Stimmt meine Lösung so?

Danke!
milka


        
Bezug
Partialbruchzerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:37 Di 23.05.2006
Autor: Milka_Kuh

Hallo,
inzwischen habe die Aufgabe nochmal genauer unter die Lupe genommen, und habe festgestellt, dass man beim Integrieren nicht einfach die Grenzen 0 und [mm] 2\pi [/mm] nehmen kann, also der Logarithmus stimmt nicht als Stammfunktion. MAn hat mir als Tipp die Cauchy-Integralformel genannt, die ich im Folgenden nun verwendet habe. Aber ich weiß einfach nicht, was ich beim Verwenden falsch gemacht habe:

die Cauchy-Integralformel lautet doch im allgemeinen Fall:

f(z) =  [mm] \bruch{1}{2i\pi} \integral_{ \partial B_{r}(a)}^{}{ \bruch{f(s)}{s-z} ds} [/mm]

Also habe ich nun gemacht:
  [mm] \integral_{\partial E}^{}{ \bruch{1}{z-a} dz} [/mm] = [mm] 2i\pi [/mm] f(a) und
  [mm] \integral_{\partial E}^{}{ \bruch{1}{z-b} dz} [/mm] = [mm] 2i\pi [/mm] f(b), also

ist das Ergebnis von   [mm] \bruch{1}{a-b}( \integral_{\partial E}^{}{ \bruch{1}{z-a} dz}-\integral_{\partial E}^{}{ \bruch{1}{z-b} dz}) [/mm] =  [mm] \bruch{2i\pi}{a-b}(f(a)-f(b)) [/mm]

Das kann doch unmöglich die Lösung sein, oder? :-)

Danke für eine Hilfe!!
milka

Bezug
                
Bezug
Partialbruchzerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:48 Di 23.05.2006
Autor: Galois

Hallo Milka_Kuh!

>  inzwischen habe die Aufgabe nochmal genauer unter die Lupe genommen, und habe festgestellt, dass man beim Integrieren nicht einfach die Grenzen 0 und [mm]2\pi[/mm] nehmen kann, also der Logarithmus stimmt nicht als Stammfunktion.

Also, der (verschobene) natürliche Logarithmus [mm] $\ln [/mm] (z-a)$ ist durchaus eine Stammfunktion von [mm]\frac1{z-a}[/mm]. Jedoch läuft Deine Integration nicht von z=0 nach [mm] $z=2\pi$, [/mm] wie Du in Deinem ersten Beitrag schriebst, sondern von z=1 einmal im Kreis und zurück nach z=1. Daß dabei gleichwohl nicht einfach [mm][\ln(z-a)]_1^1=0[/mm] rauskommt, liegt daran, daß der komplexe Logarithmus nur mit Vorsicht zu genießen ist...

Aber nun zu Deinem zweiten Lösungsansatz.

> MAn hat mir als Tipp die Cauchy-Integralformel genannt, die ich im Folgenden nun verwendet habe. Aber ich weiß einfach nicht, was ich beim Verwenden falsch gemacht habe:
>  
> die Cauchy-Integralformel lautet doch im allgemeinen Fall:
>  
> f(z) =  [mm]\bruch{1}{2i\pi} \integral_{ \partial B_{r}(a)}^{}{ \bruch{f(s)}{s-z} ds}[/mm]

Richtig - aber nur solange [mm] $z\in B_r(a)$ [/mm] gilt!!!
Für |z-a|=r verläuft der Integrationsweg durch eine Singularität, das Integral ist also (zunächst einmal) nicht definiert.
Für |z-a|>r ist der Integrad auf einer Umgebung der Kreisscheibe [mm]B_r(a)[/mm] komplex differenzierbar (da singularitätenfrei) und der Integrationsweg innerhalb dieser Kreisscheibe zu einem Punkt zusammenziehbar. Daher gilt in diesem Fall [mm] $\integral_{ \partial B_r(a)}{\frac{f(s)}{s-z} ds}=0$. [/mm]

> Also habe ich nun gemacht:
> [mm]\integral_{\partial E}^{}{ \bruch{1}{z-a} dz} = 2i\pi f(a)[/mm] und  [mm]\integral_{\partial E}^{}{ \bruch{1}{z-b} dz} = 2i\pi f(b)[/mm],

Hast Du Dir auch überlegt, was bei dieser Anwendung der Integralformel die Funktion f(z) sein muß? - Es ist hier natürlich f(z):=1, das mußt Du rechts noch einsetzen. ;-)
Ansonsten sind diese Identitäten nach dem oben Gesagten richtig, solange |a|<1 bzw. |b|<1 gilt.

> also ist das Ergebnis von [mm]\bruch{1}{a-b}( \integral_{\partial E}^{}{ \bruch{1}{z-a} dz}-\integral_{\partial E}^{}{ \bruch{1}{z-b} dz}) =\bruch{2i\pi}{a-b}(f(a)-f(b))[/mm]
>  
> Das kann doch unmöglich die Lösung sein, oder? :-)

An dieser Stelle hätte Dir auffallen können, daß plötzlich und unerwartet eine Funktion f(z) auf der rechten Seite auftaucht...
Mit meinen obigen Hinweisen erhältst Du aus deinem Ergebnis aber leicht das Endergebnis:

- Für |a|<1 und |b|<1 ist das gesuchte Integral gleich [mm] $\frac{2i\pi}{a-b}(1-1)=0$. [/mm]
- Für |a|>1 und |b|>1 ist das Integral ebenfalls gleich Null, da dann beide Einzelintegrale verschwinden.
- Ist |a|<1, aber |b|>1, verschwindet nur das zweite Einzelintegral und wir erhalten [mm] $\frac{2i\pi}{a-b}$. [/mm]
- Ist umgekehrt |a|>1 und |b|<1, so erhalten wir analog [mm] $-\frac{2i\pi}{a-b}$. [/mm]
- In den Fällen, in denen |a|=1 oder |b|=1 gilt, haben wir ein ernstes Problem mit dem Integrationsweg und fragen unseren Arzt oder Apotheker. ;-)

Grüße,
Galois


[]Bonner Matheforum

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]