matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle DifferentialgleichungenPart.DGL
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Partielle Differentialgleichungen" - Part.DGL
Part.DGL < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Part.DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:17 Do 05.03.2009
Autor: Boki87

Aufgabe
[Dateianhang nicht öffentlich]

Hallo,

ich habe die obrige part.DGL. und weiß auch wie man part.DGL. löst. Nur was beideutet das [mm] \Delta [/mm] da vorne. Hat es eine Bedeutung und wenn ja welche und wie berechne ich dann die part.DGL.?

Vielen Dank

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Part.DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 18:31 Do 05.03.2009
Autor: leduart

Hallo
das [mm] \Delta [/mm] ist genau mit dem = dahinter erklaert. es ist ne uebliche abgekuerzte schreibweise, wenn u noch von z und w abhinge kaemen die 2 ten ableitungen danach auch noch dazu.
vielleicht kennst du das auch unter dem Zeichen [mm] \Delta=div(grad)=\nabla^2 [/mm]
Gruss leduart

Bezug
                
Bezug
Part.DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:49 Do 05.03.2009
Autor: Boki87

Hallo

Also ist $ [mm] \Delta [/mm] u(x,y) $ nur eine andere Schreibweise für [mm] \partial_{xx}u(x,y)+\partial_{yy}u(x,y) [/mm] und ich kann die part.Dgl. wie üblich mit dem Separationsansatz lösen?

Gruß
Boki87

Bezug
                        
Bezug
Part.DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 20:15 Do 05.03.2009
Autor: Denny22

Hallo,

zunächst hast Du das rechteckige zweidimensionale Gebiet [mm] $\Omega=[0,1]\times[0,1]\subset\IR^2$ [/mm] vorliegen und es ist [mm] $(x,y)\in\Omega$, [/mm] d.h. [mm] $x\in[0,1]$ [/mm] und [mm] $y\in[0,1]$. [/mm] Dein Gebiet ist ausßerdem konvex polygonal mit Lipschitz-Rand. Betrachten wir Deine Aufgabe

(1): [mm] $\triangle u(x,y)=\partial_{xx} u(x,y)+\partial_{yy} [/mm] u(x,y)=0$, für [mm] $(x,y)\in\Omega$ [/mm]
(2): $u(0,y)=u(1,y)=u(x,0)=0$ und $u(x,1)=x(1-x)$, für [mm] $(x,y)\in\partial\Omega$ [/mm]

(1) heißt Laplace-Gleichung und (2) sind die zugehörigen Randbedingungen. Insgesamt hast Du also ein Randwertproblem vorliegen. In diesem Zusammenhang bezeichnet man [mm] $\triangle$ [/mm] als den Laplace-Operator, bei dem die Lösung in jede Raumrichtung zweimal differenziert (daher [mm] $\partial_{xx}$ [/mm] und [mm] $\partial_{yy}$) [/mm] und anschließend aufaddiert werden. [mm] $\partial\Omega$ [/mm] bezeichnet überings den Rand des Gebiets.

Wegen der Lösung bin ich mir nicht mehr ganz sicher, aber siehe mal hier:

[]http://www.physnet.uni-hamburg.de/hp/pfannkuche/E-Dynamik_04/vorlesungen/vorlesung10.pdf

Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]