matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungParlament/Mehrheit/Sitze
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Wahrscheinlichkeitsrechnung" - Parlament/Mehrheit/Sitze
Parlament/Mehrheit/Sitze < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parlament/Mehrheit/Sitze: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:10 Mi 12.09.2012
Autor: sissile

Aufgabe
Im Parlament eines Landes gibt es 151 Sitze und drei Parteien. Wieviele Möglichkeiten der Sitzverteilung gibt es, sodaß keine Partei eine absolute Mehrheit hat(mehr als 75 Plätze)

Hallo, es gibt an der Schule einer Freundin eine Fragenkatalog für Mathematik - Oberstufe und ich habe angeboten zu helfen.
Da ich Wahrscheinlichkeit zuletzt in der Schule hatte ist das schon sehr eingerostet.

Jede Partei 1,2,3 kann also zwischen 1 und 75 Sitzplätze haben.
Ich nehme an die Partei 1 hat x Sitze (1<=x<=75)
Dann bleiben für die Parte 2 und Partei 3 151 - x Sitze übrig.


LG

        
Bezug
Parlament/Mehrheit/Sitze: Antwort
Status: (Antwort) fertig Status 
Datum: 04:03 Do 13.09.2012
Autor: Al-Chwarizmi

Guten Tag !

> Im Parlament eines Landes gibt es 151 Sitze und drei
> Parteien. Wieviele Möglichkeiten der Sitzverteilung gibt
> es, sodaß keine Partei eine absolute Mehrheit hat (mehr als
> 75 Plätze)

> Jede Partei 1,2,3 kann also zwischen 1 und 75 Sitzplätze
> haben.

>  Ich nehme an die Partei 1 hat x Sitze (1<=x<=75)
>  Dann bleiben für die Partei 2 und Partei 3 151 - x Sitze
> übrig.

Bezeichnen wir doch zunächst die Sitzzahlen der drei
Parteien mit x, y und z.

Grundsätzlich könnte bei einer Wahl auch einmal eine
(oder gar 2) der Parteien ganz leer ausgehen. In allen
diesen Fällen hätte aber die Partei mit den meisten Sitzen
auch notwendigerweise die absolute Mehrheit. Deshalb
ist deine Annahme [mm] 1\le{x}\le75 [/mm] (und [mm] 1\le{y}\le75 [/mm] und [mm] 1\le{z}\le75) [/mm]
korrekt.
Natürlich ist z=151-x-y . Deshalb können wir nur zwei
Variablen (einigermaßen) frei wählen.
Nun kann man mal schrittweise die Möglichkeiten
durchgehen. Fangen wir etwa mit dem kleinstmöglichen
x-Wert, also x=1 an. Dann kommt für y nur der Wert
y=75 in Frage, denn schon mit y=74 würde z=151-1-74=76 ,
und damit hätte Partei 3 die absolute Mehrheit.
Mit x=2 bleibt y+z=149, was wir (in den erlaubten Grenzen)
aufteilen könnten in 75+74 oder 74+75 , also genau 2
Möglichkeiten.
In dieser Weise geht es weiter, und man kann für die
gesuchte Anzahl der Aufteilungsmöglichkeiten eine
Summe aufstellen:

  1+2+ ......

die leicht zu summieren ist.

LG    Al-Chw.  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]