matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesParametrisierung UMF
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Sonstiges" - Parametrisierung UMF
Parametrisierung UMF < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parametrisierung UMF: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:15 So 25.01.2015
Autor: MeineKekse

Aufgabe
Es sei M={(x,y,z) [mm] \in \IR^3 [/mm] | z>0 und [mm] x^2+y^2+z=1 [/mm] }
Geben Sie eine Parametrisierung von M an.


Hi, nun muss ich eine innere Karte von M finden. Die Definition einer Karte ist mir bewusst. Leider weiß ich nicht so genau, wie ich an das Suchen der Karte rangehen soll. Kann mir hier jemand ein paar Tipps verraten?

        
Bezug
Parametrisierung UMF: Antwort
Status: (Antwort) fertig Status 
Datum: 13:15 So 25.01.2015
Autor: Al-Chwarizmi


> Es sei  $\ M\ =\ [mm] \{(x,y,z)\ \in \IR^3\ \ |\ z>0\ \wedge\ \ x^2+y^2+z=1\,\}$ [/mm]

>  Geben Sie eine Parametrisierung von M an.
>  Hi, nun muss ich eine innere Karte von M finden. Die
> Definition einer Karte ist mir bewusst. Leider weiß ich
> nicht so genau, wie ich an das Suchen der Karte rangehen
> soll. Kann mir hier jemand ein paar Tipps verraten?  


Hallo

die vorliegende Gleichung schreit geradezu nach
Zylinderkoordinaten. Mein erster Tipp:  setze  [mm] r^2:=x^2+y^2 [/mm]
und schreibe die Gleichung zunächst mal als Gleichung
in z und r !  Wie du dann noch einen Winkel einführen
solltest, liegt dann eigentlich auch schon auf der Hand.

LG  ,   Al-Chwarizmi


Bezug
                
Bezug
Parametrisierung UMF: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:19 So 25.01.2015
Autor: MeineKekse

Hi,

also mit [mm] r^2=x^2+y^2 [/mm] folgt ja
[mm] \ M\ =\ \{(x,y,z)\ \in \IR^3\ \ |\ z>0\ \wedge\ \ r^2+z=1\,\} [/mm]

Wäre dann eine Karte definiert durch [mm] f: (0,1)\times (0,2pi) \to \IR^3 \ \ (r,\alpha) \mapsto (rcos(\alpha),rsin(\alpha), 1-r^2) [/mm] ?

Bezug
                        
Bezug
Parametrisierung UMF: Antwort
Status: (Antwort) fertig Status 
Datum: 14:37 So 25.01.2015
Autor: Al-Chwarizmi


> Hi,
>  
> also mit [mm]r^2=x^2+y^2[/mm] folgt ja
>  [mm] \ M\ =\ \{(x,y,z)\ \in \IR^3\ \ |\ z>0\ \wedge\ \ r^2+z=1\,\} [/mm]
>  
> Wäre dann eine Karte definiert durch

>       [mm]f: (0,1)\times (0,2\,\pi) \to \IR^3 \qquad (r,\alpha) \mapsto (rcos(\alpha),rsin(\alpha), 1-r^2) [/mm]  ?

Der Abbildungsterm stimmt; die Definitionsintervalle
noch nicht ganz.

LG  ,   Al-Chw.



Bezug
                                
Bezug
Parametrisierung UMF: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:55 So 25.01.2015
Autor: MeineKekse


> > Hi,
>  >  
> > also mit [mm]r^2=x^2+y^2[/mm] folgt ja
>  >  [mm] \ M\ =\ \{(x,y,z)\ \in \IR^3\ \ |\ z>0\ \wedge\ \ r^2+z=1\,\} [/mm]
>  
> >  

> > Wäre dann eine Karte definiert durch
>
> >       [mm]f: (0,1)\times (0,2\,\pi) \to \IR^3 \qquad (r,\alpha) \mapsto (rcos(\alpha),rsin(\alpha), 1-r^2)[/mm]

>  ?
>
> Der Abbildungsterm stimmt; die Definitionsintervalle
>  noch nicht ganz.

Hmm da bin ich mir nicht sicher, was du meinst   [mm] (0,1)\times (0,2\,\pi)[/mm]  ist offen und Teilmenge des [mm]\IR^2\[/mm]. Willst du darauf hinaus, das f für den Punkt  [mm] (0,0,1) \in M [/mm] keine Karte ist?


Bezug
                                        
Bezug
Parametrisierung UMF: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Di 27.01.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]