matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisParametrisierung/Einheitssphäre
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Parametrisierung/Einheitssphäre
Parametrisierung/Einheitssphäre < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parametrisierung/Einheitssphäre: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:19 So 06.06.2004
Autor: Volker84

Hier ist eine Aufg. meines Übungsblattes, mit der ich ein paar Problemchen habe.
Sei S²:={x aus R³| |x|=1} die Einheitssphäre in R³
. Geben sie die Parametrisierung f:[0,Pi]x[0,2Pi) -->S² Teilmenge R³ , (Theta, Phi) -->f(Theta, Phi) der Sphäre an.
Bestimmen Sie die Urbilder des Nordpols x=(0,0,1) und des Südpols x=(0,0,-1).
Geben Sie mit Hilfe von f eine Parametrisierung des Äquators A:={x aus R³| |x|=1, x3=0} an.

Danke für eine Antwort
Gruß Volker

[]http://www.onlinemathe.de/read.php?topicid=1000001215&read=1&kat=Studium

        
Bezug
Parametrisierung/Einheitssphäre: Antwort
Status: (Antwort) fertig Status 
Datum: 19:52 So 06.06.2004
Autor: Marc

Hallo Volker84,

willkommen im MatheRaum :-)!

> Hier ist eine Aufg. meines Übungsblattes, mit der ich ein
> paar Problemchen habe.

Welche Problemchen denn genau?

>  Sei S²:={x aus R³| |x|=1} die Einheitssphäre in R³
>  . Geben sie die Parametrisierung f:[0,Pi]x[0,2Pi) -->S²
> Teilmenge R³ , (Theta, Phi) -->f(Theta, Phi) der Sphäre
> an.

$f: [mm] [0,\pi]\times[0,2\pi]\to S^2\subset \IR^3$ [/mm]
[mm] $(\theta, \phi)\mapsto f(\theta, \phi)$ [/mm]

Die Parametrisierung ist doch recht naheliegend, jedenfalls vom Prinzip her.
Stelle dir einen Armreif vor, der um eine Mandarine (um irgendeine Achse) rotiert.
Wenn du den Armreif um 180° [mm] (=\pi) [/mm] gedreht hast, wurde jeder Punkt auf der Oberfläche der Mandarine vom Armreif überstrichen.

Der Rotationswinkel des Armreif ist also [mm] $\theta$. [/mm]

Eine Rotation auf dem Armreif selbst kann durch den zweiten Parameter [mm] $\phi$ [/mm] beschrieben werden.

Wir haben also zwei sich überlagernde Rotationen, die aber recht simpel durch eine Hintereinanderausführung folgender Rotationen beschrieben werden können:
Stelle dir einen Einheitskreis in der yz-Ebene vor.
Parametrisiere diesen zunächst durch den Parameter [mm] $\phi$. [/mm]
Nun rotiere diesen Kreis um die z-Achse, gemäß Parameter [mm] $\theta$. [/mm]

Beide Rotationen können also auf die Rotation (-smatrix) eines Punktes innerhalb einer Ebene des [mm] $\IR^3$ [/mm] beschrieben werden.

>  Bestimmen Sie die Urbilder des Nordpols x=(0,0,1) und des
> Südpols x=(0,0,-1).
>  Geben Sie mit Hilfe von f eine Parametrisierung des
> Äquators A:={x aus R³| |x|=1, x3=0} an.

Wenn wir die Parametrisierung haben, dürfte das kein Problem mehr sein.

> []http://www.onlinemathe.de/read.php?topicid=1000001215&read=1&kat=Studium

Danke für den Link :-)
Wenn du auch nett zu den Leuten auf onlinemathe.de sein willst, setze dort jetzt auch einen Link auf unsere Diskussion.

Viele Grüße,
Marc

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]