matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenParametrisierung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Reelle Analysis mehrerer Veränderlichen" - Parametrisierung
Parametrisierung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parametrisierung: Aufgabenhilfe
Status: (Frage) beantwortet Status 
Datum: 20:56 Do 07.05.2009
Autor: Ultio

Aufgabe
Parametrisieren Sie die Lösungsmenge der Gleichung [mm] x^{4} [/mm] + [mm] y^{2} [/mm] = 1 durch eine Kurve c, untersuchen Sie c auf Differenzierbarkeit und bestimmen sie gegebenenfalls die Ableitung.

Hallo, ich brauch mal bitte einen Denkanstoß.

Mit der allgemeinen Kreisgleichung und der allgemeinen Elipsengleichung haben wir diese Problematik behandelt, allerdings fehlt mir irgendwie die zündende Idee um an dieses Problem heranzugehen.
x [mm] =\wurzel[4]{1-y^{2}} [/mm]
y [mm] =\wurzel[2]{1-x^{4}} [/mm]
so dann hatte ich folgende Überlegung, bin aber ganz und gar der Meinung das dies falsch ist, ebenso komme ich aber auch auf keine andere Idee:
c(t) = [mm] (\wurzel[4]{1-y^{2}},\wurzel[2]{1-x^{4}}) [/mm]
c'(t) = [mm] (\wurzel[3]{1-y^{2}} [/mm] * [mm] (-8y),(1-x^{4})^{-1/2}*(-2x^{3})) [/mm]
Vielen Dank für eure Antworten.
Mit freundlichen Grüßen

        
Bezug
Parametrisierung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:20 Do 07.05.2009
Autor: MathePower

Hallo Ultio,

> Parametrisieren Sie die Lösungsmenge der Gleichung [mm]x^{4}[/mm] +
> [mm]y^{2}[/mm] = 1 durch eine Kurve c, untersuchen Sie c auf
> Differenzierbarkeit und bestimmen sie gegebenenfalls die
> Ableitung.
>  Hallo, ich brauch mal bitte einen Denkanstoß.
>  
> Mit der allgemeinen Kreisgleichung und der allgemeinen
> Elipsengleichung haben wir diese Problematik behandelt,
> allerdings fehlt mir irgendwie die zündende Idee um an
> dieses Problem heranzugehen.
>  x [mm]=\wurzel[4]{1-y^{2}}[/mm]
>  y [mm]=\wurzel[2]{1-x^{4}}[/mm]
>  so dann hatte ich folgende Überlegung, bin aber ganz und
> gar der Meinung das dies falsch ist, ebenso komme ich aber
> auch auf keine andere Idee:
>  c(t) = [mm](\wurzel[4]{1-y^{2}},\wurzel[2]{1-x^{4}})[/mm]


Die Kurve soll nur von dem Parameter t abhängen, demnach

[mm]c(t) = \pmat{\wurzel[4]{1-t^{2}} \\ t}[/mm]

oder

[mm]c(t) = \pmat{t \\ \wurzel{1-t^{4}}[/mm]


Wobei noch zu berücksichtigen ist, daß auch
negative Wurzelwerte zur Lösungsmenge gehören.


>  c'(t) = [mm](\wurzel[3]{1-y^{2}}[/mm] *
> [mm](-8y),(1-x^{4})^{-1/2}*(-2x^{3}))[/mm]
>  Vielen Dank für eure Antworten.
>  Mit freundlichen Grüßen


Gruß
MathePower

Bezug
                
Bezug
Parametrisierung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:33 Do 07.05.2009
Autor: Ultio

Dankeschön

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]