Parametrisierung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:57 Do 21.06.2007 | Autor: | EasyLee |
Hallo!
Ich muss eine Parametrisierung für
V={(x,y,z) [mm] \in \IR^3 [/mm] | [mm] x\ge0, y\ge0, z\ge0, x+y+2z\le1 [/mm] }
finden um später das Volumen über einer geg. Fkt zu berechnen. Ich kann
das gar nicht. Will einfach mit dem Weg [mm] \vektor{x \\ y \\ \bruch{1-x-y}{2}} [/mm]
Parametrisieren. Das soll aber in y nicht richtig sein. Wieso? Kann sowas
auch nicht zeichnen um etwa die Grenzen zu finden. Kann doch nicht sein
oder? Kann mir das mal jemand klar machen. Weiß echt nicht wie man das
angeht.
Gruß
EasyLee
|
|
|
|
Wenn man die Ungleichheitszeichen durch Gleichheitszeichen ersetzt, bekommt man vier Ebenen (Schulmathematik):
[mm]x=0: \ \ \text{die} \ yz- \text{Ebene}[/mm]
[mm]y=0: \ \ \text{die} \ xz- \text{Ebene}[/mm]
[mm]z=0: \ \ \text{die} \ xy- \text{Ebene}[/mm]
Die Ungleichungen [mm]x\geq 0, \ y \geq 0, \ z \geq 0[/mm] bestimmen daher den I. Oktanten im [mm]xyz[/mm]-Koordinatensystem. Fehlt noch die dritte Ebene:
[mm]E: \ \ x+y+2z-1 = 0[/mm]
Am besten bestimmst du deren Schnittpunkte mit der [mm]x[/mm]- bzw. [mm]y[/mm]- bzw. [mm]z[/mm]-Achse. Dann kannst du das Tetraeder, das durch die 4 Ebenen festgelegt wird, leicht zeichnen.
|
|
|
|