matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenParametergleichung einer Ebene
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Geraden und Ebenen" - Parametergleichung einer Ebene
Parametergleichung einer Ebene < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parametergleichung einer Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:38 So 19.11.2006
Autor: splin

Aufgabe
Bestimmen sie eine Parametergleichung der Ebene E, die die Gerade [mm] l:\vec{x}=\vektor{0 \\ -1\\0}+r\vektor{1 \\ 4\\1} [/mm] enthält und auf der Geraden [mm] g:\vec{x}=\vektor{-1 \\ 1\\2}+k\vektor{4 \\ -2\\4} [/mm] senkrecht steht.

Hallo, ich habe folgende Überlegung:
Wenn Ebene E die Gerade l enthalten soll, dann kann ich Ortsvektor und Richtungsvektor der Geraden l für die Gleichung E übernemmen(stimmt das so?). Nun fehlt mir ein zweiter Richtungsvektor der Ebene E. Wenn die Ebene E auf der g senkrecht steheen soll, dann müssen ihre beide Richtungsvektoren orthogonal zum Richtungsvektor der Geraden g sein.
Wie bestimme ich den zweiten Richtungsvektor der Ebene E ?

        
Bezug
Parametergleichung einer Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 00:41 So 19.11.2006
Autor: DaMenge

Hi,

>Wenn die Ebene E auf

> der g senkrecht steheen soll, dann müssen ihre beide
> Richtungsvektoren orthogonal zum Richtungsvektor der
> Geraden g sein.

oder um es anders zu sagen : der richtungsvektor von g ist normalenvektor der ebene..
also normalenform bestimmen und in parameterform umwandeln wäre wohl das schnellste, oder?

viele Grüße
DaMenge

Bezug
                
Bezug
Parametergleichung einer Ebene: Ist das richtig so?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:46 So 19.11.2006
Autor: splin

Also, als Normalenvektor habe ich den Richtungsvektor der g übernommen und Ortsvektor habe ich von der l genommen. Dabei habe ich folgende Normalengleichung der E2 erhalten:
[mm] E:\vektor{4 \\ -2\\4}*\vec{x}=2 [/mm]

Stimmt das so?

Bezug
                        
Bezug
Parametergleichung einer Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:53 So 19.11.2006
Autor: splin

Habe mich vorher vertan und eine Mitteilung gesendet.
Eigentlich sollte es eine Frage sein.

> Also, als Normalenvektor habe ich den Richtungsvektor der g
> übernommen und Ortsvektor habe ich von der l genommen.
> Dabei habe ich folgende Normalengleichung der E2 erhalten:
>  [mm]E:\vektor{4 \\ -2\\4}*\vec{x}=2[/mm]
>  
> Stimmt das so?


Bezug
                                
Bezug
Parametergleichung einer Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 12:02 Mo 20.11.2006
Autor: M.Rex


> Habe mich vorher vertan und eine Mitteilung gesendet.
>  Eigentlich sollte es eine Frage sein.
>  > Also, als Normalenvektor habe ich den Richtungsvektor

> der g
> > übernommen und Ortsvektor habe ich von der l genommen.
> > Dabei habe ich folgende Normalengleichung der E2 erhalten:
>  >  [mm]E:\vektor{4 \\ -2\\4}*\vec{x}=2[/mm]
>  >  
> > Stimmt das so?

yep

Marius

>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]