matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenParameterdarstellungen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Geraden und Ebenen" - Parameterdarstellungen
Parameterdarstellungen < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parameterdarstellungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:18 Di 02.10.2007
Autor: Loon

Aufgabe
Geben Sie den Richtungs- und Stützvektor der Geraden an.
a) [mm] \vec{x} [/mm] = [mm] \vektor{3 \\ -2 \\ 4} [/mm] + [mm] \lambda\vektor{1 \\ -1 \\ 1} [/mm]
b) [mm] \vec{x} [/mm] = [mm] \lambda \vektor{-1 \\ 0 \\ 2} [/mm] + [mm] \vektor{1 \\ 1 \\ -1} [/mm]
c) [mm] \vec{x} [/mm] = [mm] \vektor{\lambda \\ \lambda \\ -1} [/mm]
d) [mm] \vec{x} [/mm] = [mm] \vektor{1-2\lambda \\ -2+\lambda} [/mm]

Hallo,
ich glaube, ich habe das Thema Parameterdarstellungen noch nicht richtig verstanden.
Bei Aufgaben a) und b) habe ich [mm] \vektor{1 \\ -1 \\ 1} [/mm] (a) und [mm] \vektor{-1 \\ 0 \\ 2} [/mm] (b) als Richtungsvektoren definiert, da ja [mm] \lambda [/mm] davorsteht, diese Vektoren können also mit einer beliebigen Zahl multipliziert werden und führen dann zu einem Punkt, der auf der Geraden liegt. Die übrigen Angaben stehen für einen Punkt, der sich auf der Geraden befindet. Wie berechne ich jetzt den Stützvektor? Ist der Stützvektor einfach der Ortsvektor zum angegeben Punkt, also bei a) [mm] \vec{OX} [/mm] = [mm] \vektor{3 \\ -2 \\ 4} [/mm] ?

Bei Aufgaben c) und d) habe ich überhaupt keinen Ansatz gefunden.
Ich würde mich über Tipps freuen!

Danke, Loon

        
Bezug
Parameterdarstellungen: Hinweise
Status: (Antwort) fertig Status 
Datum: 10:35 Di 02.10.2007
Autor: Roadrunner

Hallo Loon!


> Bei Aufgaben a) und b) habe ich [mm]\vektor{1 \\ -1 \\ 1}[/mm] (a) und [mm]\vektor{-1 \\ 0 \\ 2}[/mm] (b) als Richtungsvektoren
> definiert, da ja [mm]\lambda[/mm] davorsteht, diese Vektoren können
> also mit einer beliebigen Zahl multipliziert werden und
> führen dann zu einem Punkt, der auf der Geraden liegt.

[ok] Richtig!


> Ist der Stützvektor einfach der Ortsvektor zum angegeben
> Punkt, also bei a) [mm]\vec{OX}[/mm] = [mm]\vektor{3 \\ -2 \\ 4}[/mm] ?

[ok] Genau!


> Bei Aufgaben c) und d) habe ich überhaupt keinen Ansatz gefunden.

Du kannst hier entsprechend ergänzen bzw. zerlegen:

[mm] $$\vec{x} [/mm] \ = \ [mm] \vektor{\lambda \\ \lambda \\ -1} [/mm] \ = \ [mm] \vektor{0+\lambda \\ 0+\lambda \\ -1+0} [/mm] \ = \ [mm] \vektor{0 \\ 0 \\ -1}+\vektor{\lambda \\ \lambda \\ 0} [/mm] \ = \ [mm] \vektor{0 \\ 0 \\ -1}+\vektor{\lambda*1 \\ \lambda*1 \\ \lambda*0} [/mm] \ = \ [mm] \vektor{0 \\ 0 \\ -1}+\lambda*\vektor{1 \\ 1 \\ 0}$$ [/mm]

[mm] $$\vec{x} [/mm] \ = \ [mm] \vektor{1-2\lambda \\ -2+\lambda} [/mm] \ = \ [mm] \vektor{1 \\ -2}+\vektor{-2*\lambda \\ 1*\lambda} [/mm] \ = \ ...$$

Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]