matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungParameterdarstellung - Ellipse
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra / Vektorrechnung" - Parameterdarstellung - Ellipse
Parameterdarstellung - Ellipse < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parameterdarstellung - Ellipse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:56 So 29.01.2012
Autor: Strawberry1

Aufgabe
Gegeben ist eine Ellipse mit der Gleichung [mm] \bruch{x^2}{a^2}+\bruch{y^2}{b^2}=1 [/mm]

Gesucht ist nun eine Parameterdarstellung, die Tangente in einem allgemeinen Punkt und der umschlossene Flächeninhalt, letzterer mit Hilfe der Leibnizschen Sektorformel

[mm] A=\bruch{1}{2}\integral{det(c,c') dt} [/mm]

Leider stehe ich bei dieser Aufgabe momentan ziemlich auf der Leitung.
Naja die allgemeine Darstellung einer Kurve in Parameterform im [mm] \IR_{2} [/mm] ist ja

[mm] c(t)=(c_{1}(t),c_{2}(t)) [/mm]

Nur wie komme ich auf diese [mm] c(t) [/mm]? Beziehungsweise wann und wie führe ich den Parameter [mm] t [/mm] ein?

Herauskommen müsste ja eigentlich [mm] c(t)=\vektor{a*cost \\ b*sint} [/mm]
...

Nun ja...
Der zweite Teil der Aufgabe ist mir klar, (wie man die Tangente bildet) nur beim Flächeninhalt bin ich wieder etwas verwirrt.

Und zwar frage ich mich: Ist der "umschlossene Flächeninhalt" einfach der Flächeninhalt der Ellipse?
Und was ist mit [mm] det(c,c') [/mm] gemeint? Ist das etwa die Determinante der 2x2 Matrix die sich aus den beiden Vektoren [mm] c(t) [/mm] und [mm] c'(t) [/mm] ergibt?

Ich hoffe Ihr könnt mir helfen.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
Parameterdarstellung - Ellipse: Antwort
Status: (Antwort) fertig Status 
Datum: 20:18 So 29.01.2012
Autor: leduart

Hallo
alle deine Fragen mit ja beantwortet. det(c,c' kann man auch als vektorprodukt bezeichnen, falls c aus [mm] \IR^2 [/mm] ist.
Wenn du die fkt [mm] y=b*\wurzel{1-x^2/a^2} [/mm] integrierst um etwa 1/4 der Ellipse zu kriegen, brauchst du für das Integral genau die Umformungen, die du auch bei der parametrisierung hast. Zudem sollst du lernen Flächen von geschlossenen Kurven zu berechnen, die man nicht immer wenigstens teilweise als Graph von Funktionen darstellen kann. Hier ist es wirklich viel einfacher die Flache so zu berechnen.
Gruss leduart  

Bezug
                
Bezug
Parameterdarstellung - Ellipse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:40 So 29.01.2012
Autor: Strawberry1

Aufgabe
Gegeben ist eine Ellipse mit der Gleichung [mm] \bruch{x^2}{a^2}+\bruch{y^2}{b^2}=1 [/mm]

Gesucht ist nun eine Parameterdarstellung, die Tangente in einem allgemeinen Punkt und der umschlossene Flächeninhalt, letzterer mit Hilfe der Leibnizschen Sektorformel

[mm] A=\bruch{1}{2}\integral{det(c,c') dt} [/mm]

Hallo,
danke für die schnelle Antwort!

Leider verstehe ich die Antwort nicht ganz:
Also, das mit der Fläche ist mir dann klar aber was soll das heißen:

>  Wenn du die fkt [mm]y=b*\wurzel{1-x^2/a^2}[/mm] integrierst um etwa
> 1/4 der Ellipse zu kriegen, brauchst du für das Integral
> genau die Umformungen, die du auch bei der parametrisierung
> hast.

Also die konkrete Frage ist:
Wie komme ich von dieser Form

[mm] \bruch{x^2}{a^2}+\bruch{y^2}{b^2}=1 [/mm]

zu dieser Form:

[mm] c(t)=\vektor{a*cost \\ b*sint} [/mm] ?

Danke schon mal im Voraus!


Bezug
                        
Bezug
Parameterdarstellung - Ellipse: Antwort
Status: (Antwort) fertig Status 
Datum: 23:07 So 29.01.2012
Autor: leduart

Hallo
von der Parameterform auf die x,y form ist klar?
umgkehrt muss man das sehen, a) es läuft was um, Kreis kennt man, der wird in einer y_ richtung mit dem Faktor b/a gestaucht. Wenn du also vom Kreis (acost,asint) ausgehst und in y- richtung um b/a stauchst kommst du auf (acost,b/a*asint)
ebenso wenn du von [mm] x^2+y^2=a^2 [/mm] ausgehst und stauchst kommst du auf [mm] x^2+a^2/b^2y^2=a^2 [/mm]  die ellipsengleichng.
Gruss leduart

Bezug
                                
Bezug
Parameterdarstellung - Ellipse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:38 So 29.01.2012
Autor: Strawberry1


Also wie geht das denn umgekehrt? (also von der Parameterdarstellung zur expliziten Darstellung)
Hm...
Also das was du schreibst klingt ja ganz logisch, nur: Dazu muss ich ja genau wissen wie Meine Funktion aussieht. (Und auch die Parameterdarstellung des Kreises kennen) Denn du kommst ja auf die Lösung in dem du sagst: Ich weiß wie eine Ellipse im vergleich zu einem Kreis aussieht, und dann mehr oder weniger logisch überlegst. Aber was mache ich wenn die Funktion beliebig ist? Bzw. wie mache ich das bei Raumkurven?
Denn das nächste Beispiel (auf meinem Zettel) wäre dann: Die Parameterdarstellung eines Torus mit der z-Achse als Rotationsachse zu finden.
?

Grüße, Strawberry


Bezug
                                        
Bezug
Parameterdarstellung - Ellipse: Antwort
Status: (Antwort) fertig Status 
Datum: 23:57 So 29.01.2012
Autor: leduart

Hallo
wenn man überhaupt sin und cos Funktion kennt, dann sollte klar sein, das (cost,sint) auf dem einheitskreis liegen, mit r mult. auf Kreis mit Radius r .
natürlich muss man was über die dinger wissen, wenn man sie geschickt parametrisieren will. aber etwa sin^2t+cos^2t=1 muss man schon kennen, mit funktionen, die man nicht kennt kann man schlecht was finden.
zum Torus: du kannst nen Kreis mit Radius r in der x-z Ebene oder der in der x-y ebene. also weisst du schon wie der torus da aussehen muss
[mm] (x-M)^2+z^2=r^2, [/mm] den kannst du schon mal parametrisieren. x=M+rcost  z=rsint  in der x- y ebene hast du auch nen Kreis [mm] x^2+y^2=R^2 [/mm] den kannst du auch parametrisieren. jetzt läuft der Mittelpunkt des kleinen Kreises auf dem grossen rum. dann hast du alle Teile .
Das ist aber keine Raumkurve, sondern eine Fläche! Darum brauchst du auch 2 Parameter!
für eine Kurve nur einen.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]