matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungParameter p
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integralrechnung" - Parameter p
Parameter p < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parameter p: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:52 Di 23.09.2008
Autor: Mandy_90

Aufgabe
Wie muss p gewählt werden,damit die markierte Fläche den Inhalt A=7 hat?
[mm] f(x)=px^{3}-p^{2}x [/mm] ,p>0

Hallo^^

Ich hab ein kleines Problem bei dieser Aufgabe.Ich erhalte für p zwar einen Wert aber wenn ich den Wert in die Gleichung einsetze und nachprüfe,stimmts nicht,ich weiß nicht wo mein Fehler liegt.

Es ist ja folgendes Integral zu berechnen:

[mm] \integral_{0}^{1}{f(x) dx}=[\bruch{1}{4}px^{4}-\bruch{1}{2}p^{2}x^{2}] [/mm]

[mm] F(1)=\bruch{1}{4}p-\bruch{1}{2}p^{2}=-7 [/mm]

[mm] \bruch{1}{2}p^{2}-\bruch{1}{4}p-7=0 [/mm]

durch die pq-Formel erhalte ich die beiden Lösungen [mm] x_{1}=2 [/mm] und [mm] x_{2}=-1,55 [/mm]

lg

        
Bezug
Parameter p: Antwort
Status: (Antwort) fertig Status 
Datum: 16:00 Di 23.09.2008
Autor: fred97


> Wie muss p gewählt werden,damit die markierte Fläche den
> Inhalt A=7 hat?
>  [mm]f(x)=px^{3}-p^{2}x[/mm] ,p>0
>  Hallo^^
>  
> Ich hab ein kleines Problem bei dieser Aufgabe.Ich erhalte
> für p zwar einen Wert aber wenn ich den Wert in die
> Gleichung einsetze und nachprüfe,stimmts nicht,ich weiß
> nicht wo mein Fehler liegt.
>  
> Es ist ja folgendes Integral zu berechnen:
>  
> [mm]\integral_{0}^{1}{f(x) dx}=[\bruch{1}{4}px^{4}-\bruch{1}{2}p^{2}x^{2}][/mm]
>  

Bist Du da sicher ?  Wo ist denn die markierte Fläche zu sehen ?


> [mm]F(1)=\bruch{1}{4}p-\bruch{1}{2}p^{2}=-7[/mm]
>  
> [mm]\bruch{1}{2}p^{2}-\bruch{1}{4}p-7=0[/mm]
>  
> durch die pq-Formel erhalte ich die beiden Lösungen [mm]x_{1}=2[/mm]
> und [mm]x_{2}=-1,55[/mm]


Wie kommst Du auf so etwas. Mach mal die Probe und Du siehst, dass dies keine Lösungen der quadratischen Gl sind

FRED

>  
> lg


Bezug
                
Bezug
Parameter p: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:41 Di 23.09.2008
Autor: Mandy_90


> > Wie muss p gewählt werden,damit die markierte Fläche den
> > Inhalt A=7 hat?
>  >  [mm]f(x)=px^{3}-p^{2}x[/mm] ,p>0
>  >  Hallo^^
>  >  
> > Ich hab ein kleines Problem bei dieser Aufgabe.Ich erhalte
> > für p zwar einen Wert aber wenn ich den Wert in die
> > Gleichung einsetze und nachprüfe,stimmts nicht,ich weiß
> > nicht wo mein Fehler liegt.
>  >  
> > Es ist ja folgendes Integral zu berechnen:
>  >  
> > [mm]\integral_{0}^{1}{f(x) dx}=[\bruch{1}{4}px^{4}-\bruch{1}{2}p^{2}x^{2}][/mm]
>  
> >  

>
> Bist Du da sicher ?  Wo ist denn die markierte Fläche zu
> sehen ?

Hier ist nochmla ein Bild,die markierte orangfarbene Fläche soll den Inhalt 7 haben.

[Dateianhang nicht öffentlich]

> > [mm]F(1)=\bruch{1}{4}p-\bruch{1}{2}p^{2}=-7[/mm]
>  >  
> > [mm]\bruch{1}{2}p^{2}-\bruch{1}{4}p-7=0[/mm]
>  >  
> > durch die pq-Formel erhalte ich die beiden Lösungen [mm]x_{1}=2[/mm]
> > und [mm]x_{2}=-1,55[/mm]
>  
>
> Wie kommst Du auf so etwas. Mach mal die Probe und Du
> siehst, dass dies keine Lösungen der quadratischen Gl sind

Ich hab die PQ-Formel angewandt und die gibt mir diese Lösungen,was sollte da denn sonst rauskommen?

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Bezug
                        
Bezug
Parameter p: Antwort
Status: (Antwort) fertig Status 
Datum: 16:47 Di 23.09.2008
Autor: fred97


> > > Wie muss p gewählt werden,damit die markierte Fläche den
> > > Inhalt A=7 hat?
>  >  >  [mm]f(x)=px^{3}-p^{2}x[/mm] ,p>0
>  >  >  Hallo^^
>  >  >  
> > > Ich hab ein kleines Problem bei dieser Aufgabe.Ich erhalte
> > > für p zwar einen Wert aber wenn ich den Wert in die
> > > Gleichung einsetze und nachprüfe,stimmts nicht,ich weiß
> > > nicht wo mein Fehler liegt.
>  >  >  
> > > Es ist ja folgendes Integral zu berechnen:
>  >  >  
> > > [mm]\integral_{0}^{1}{f(x) dx}=[\bruch{1}{4}px^{4}-\bruch{1}{2}p^{2}x^{2}][/mm]
>  
> >  

> > >  

> >
> > Bist Du da sicher ?  Wo ist denn die markierte Fläche zu
> > sehen ?
>  
> Hier ist nochmla ein Bild,die markierte orangfarbene Fläche
> soll den Inhalt 7 haben.

Das bild hattest Du oben noch nicht !!!

>
> [Dateianhang nicht öffentlich]
>  
> > > [mm]F(1)=\bruch{1}{4}p-\bruch{1}{2}p^{2}=-7[/mm]
>  >  >  
> > > [mm]\bruch{1}{2}p^{2}-\bruch{1}{4}p-7=0[/mm]
>  >  >  
> > > durch die pq-Formel erhalte ich die beiden Lösungen [mm]x_{1}=2[/mm]
> > > und [mm]x_{2}=-1,55[/mm]
>  >  
> >
> > Wie kommst Du auf so etwas. Mach mal die Probe und Du
> > siehst, dass dies keine Lösungen der quadratischen Gl sind
>  
> Ich hab die PQ-Formel angewandt und die gibt mir diese
> Lösungen,was sollte da denn sonst rauskommen?

Warum machst Du nicht die Probe ????


Du hast falsch gerechnet. Lösungen sind 4 und -3,5

FRED



Bezug
                                
Bezug
Parameter p: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:58 Di 23.09.2008
Autor: Mandy_90


> Das bild hattest Du oben noch nicht !!!

Ich weiß,habs ja auch eben erst hochgeladen.
  

> >
> > [Dateianhang nicht öffentlich]
>  >  
> > > > [mm]F(1)=\bruch{1}{4}p-\bruch{1}{2}p^{2}=-7[/mm]
>  >  >  >  
> > > > [mm]\bruch{1}{2}p^{2}-\bruch{1}{4}p-7=0[/mm]
>  >  >  >  
> > > > durch die pq-Formel erhalte ich die beiden Lösungen [mm]x_{1}=2[/mm]
> > > > und [mm]x_{2}=-1,55[/mm]
>  >  >  
> > >
> > > Wie kommst Du auf so etwas. Mach mal die Probe und Du
> > > siehst, dass dies keine Lösungen der quadratischen Gl sind
>  >  
> > Ich hab die PQ-Formel angewandt und die gibt mir diese
> > Lösungen,was sollte da denn sonst rauskommen?
>
> Warum machst Du nicht die Probe ????

Ich hatte die Probe gemacht,sogar mehrmals und hatte immer das selbe rausbekommen,aber ich weiß jetzt was ich falsch gemacht hab.Ich hatte anstatt die 7 durch 0.5 zu dividieren mit 0.5 multipliziert.
Aber jetzt is es ok.

lg



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]