matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLängen, Abstände, WinkelParameter bestimmen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Längen, Abstände, Winkel" - Parameter bestimmen
Parameter bestimmen < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parameter bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:50 Mi 22.02.2012
Autor: Amicus

Aufgabe
[mm] E:\vektor{2\\a\\1}\vec{x}-(a+4)=0 [/mm]

Bestimmen sie a so, dass die Ebene E vom Ursprung des Koordinatensystems den Abstand 2 LE hat.

Zuerst auf die HNF bringen:

[mm] \bruch{1}{\wurzel{5+a^2}}*\vektor{2\\a\\1}\vec{x}-\bruch{a+4}{\wurzel{5+a^2}}=0 [/mm]

=>  [mm] \bruch{a+4}{\wurzel{5+a^2}}=2 [/mm]

<=> [mm] a=2*\wurzel{5+a^2}-4 [/mm]

<=> [mm] a=\wurzel{20+4a^2}-4 [/mm]

<=> [mm] a^2=20+4a^2-16 [/mm]

<=> [mm] 3a^2=-4 [/mm]

<=> [mm] a^2=-\bruch{4}{3} [/mm]

Und dann kann man ja nicht aus einer negativen Zahl die Wurzel ziehen.
Ich bin echt ratlos.

        
Bezug
Parameter bestimmen: binomische Formel
Status: (Antwort) fertig Status 
Datum: 15:56 Mi 22.02.2012
Autor: Roadrunner

Hallo Amicus!


> =>  [mm]\bruch{a+4}{\wurzel{5+a^2}}=2[/mm]

[ok]

  

> <=> [mm]a=2*\wurzel{5+a^2}-4[/mm]
>  
> <=> [mm]a=\wurzel{20+4a^2}-4[/mm]
>  
> <=> [mm]a^2=20+4a^2-16[/mm]

[notok] [notok] [notok] Beim Quadrieren der Gleichung musst Du auf der rechten Seite auch eine binomische Formel anwenden.


Am besten Du quadrierst bei diesem Schritt:

$$a+4 \ = \ [mm] 2*\wurzel{5+a^2}$$ [/mm]
[mm] $$(a+4)^2 [/mm] \ = \ [mm] 4*\left(5+a^2\right)$$ [/mm]
Dann gibt es am Ende auch zwei Lösungen.


Gruß vom
Roadrunner

Bezug
                
Bezug
Parameter bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:05 Mi 22.02.2012
Autor: Amicus

Die Möglichkeit hatte ich auch schon einmal probiert, da kommt dann

[mm] a=\bruch{4}{3} [/mm] +/- [mm] \bruch{2}{\wurzel{3}} [/mm]

raus.

Laut Lösungen soll aber a=2 oder [mm] a=\bruch{2}{3} [/mm] rauskommen.


EDIT: Da hab ich wohl von Anfang an alles richtig gemacht und dann eine Wurzel zu viel gezogen.

[mm] \wurzel{DIS}=\bruch{2}{3} [/mm] und dann stimmts!

Bezug
                        
Bezug
Parameter bestimmen: nun richtig
Status: (Antwort) fertig Status 
Datum: 16:11 Mi 22.02.2012
Autor: Roadrunner

Hallo Amicus!


> Laut Lösungen soll aber a=2 oder [mm]a=\bruch{2}{3}[/mm] rauskommen.

[ok]

  

> EDIT: Da hab ich wohl von Anfang an alles richtig gemacht
> und dann eine Wurzel zu viel gezogen.
>  
> [mm]\wurzel{DIS}=\bruch{2}{3}[/mm] und dann stimmts!

[ok]


Gruß vom
Roadrunner

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]