matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikParameter bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - Parameter bestimmen
Parameter bestimmen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parameter bestimmen: Idee
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 20:43 Sa 03.12.2011
Autor: offthegrid

Aufgabe
Sei n=1000. Wie groß muss p gewählt werden, dass [mm] \sum_{k=0}^{100} p^k (1-p)^{n-k} \vektor{n \\ k} \geq [/mm] 0.8? Arbeiten Sie ohne tabellierte Werte.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Wie kann ich diese Frage beantworten, ohne irgendwelche tabellierten Verteilungen zur Rate zu ziehen? Die Näherung mittels Normalverteilung, scheint nicht zweckmäßig, da ich ja nach p auflösen muss und keine Stammfunktion existiert. Auch die Näherung mittels Poissonverteilung scheint wenig zweckmäßig, weil es schwer fallen dürfte, die Summe zu berechnen.

Ich wäre für Vorschläge sehr dankbar!

        
Bezug
Parameter bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:11 Sa 03.12.2011
Autor: kamaleonti

Hallo offthegrid,

    [willkommenmr]!

> Sei n=1000. Wie groß muss p gewählt werden, dass
> [mm]\sum_{k=0}^{100} p^k (1-p)^{n-k} \vektor{n \\ k} \geq[/mm] 0.8?
> Arbeiten Sie ohne tabellierte Werte.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
>
> Wie kann ich diese Frage beantworten, ohne irgendwelche
> tabellierten Verteilungen zur Rate zu ziehen? Die Näherung
> mittels Normalverteilung, scheint nicht zweckmäßig, da
> ich ja nach p auflösen muss und keine Stammfunktion
> existiert. Auch die Näherung mittels Poissonverteilung
> scheint wenig zweckmäßig, weil es schwer fallen dürfte, die Summe zu berechnen.

Wenn ihr mit Näherungen arbeiten dürft, dann wäre das wohl trotzdem das Mittel der Wahl (auch wenn man p so zunächst nur näherungsweise erhält). Für große n gilt

           [mm] \binom{n}{k}p^n(1-p)^{n-k}\approx e^{-\lambda}\frac{\lambda^k}{k!} [/mm]

mit [mm] \lambda=np, k\in\{0,\ldots,n\}. [/mm] Dann folgt

(*)          [mm] \sum_{k=0}^{100} p^k (1-p)^{n-k} \vektor{n \\ k}\approx\sum_{k=0}^{100}e^{-\lambda}\frac{\lambda^k}{k!}=1-e^{-\lambda}\sum_{k=101}^{\infty}\frac{\lambda^k}{k!}=:1-e^{-\lambda}R_{100+1}, [/mm]

hier bezeichnet [mm] R_{n+1}=\sum_{k=n+1}^{\infty}\frac{\lambda^k}{k!} [/mm] das n+1. Reststück der Exponentialreihe.

Für dieses kann man die Abschätzung

          [mm] R_{n+1}\leq\frac{2\lambda^{n+1}}{(n+1)!} [/mm]

beweisen. Damit erhält man

          [mm] 1-e^{-\lambda}R_{100+1}\geq1-e^{-\lambda}\frac{2\lambda^{100+1}}{(100+1)!} [/mm]

und kann nun versuchen die Ungleichung [mm] 1-e^{-\lambda}\frac{2\lambda^{100+1}}{(100+1)!}\geq0,8 [/mm] nach p aufzulösen. Dieser Weg ist möglicherweise nicht der übliche, deswegen bleibt die Frage teilweise beantwortet.

LG



    

Bezug
                
Bezug
Parameter bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:10 So 04.12.2011
Autor: offthegrid

Vielen Dank für deine Antwort. So etwas in diese Richtung habe ich mir auch schon überlegt, dachte jedoch dass diese Restgliedabschätzungen meist doch eher unbefriedigend genau sind und das Ergebnis so schon sehr verfälscht wird. Naja ich versuche das jetzt mal damit und überprüfe mal, wie weit das dann abweicht.

Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]