matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeParam.- in Koordinatenform
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Gleichungssysteme" - Param.- in Koordinatenform
Param.- in Koordinatenform < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Param.- in Koordinatenform: Bei einer Geraden ?
Status: (Frage) beantwortet Status 
Datum: 19:07 So 29.01.2006
Autor: d.liang

Hallo,

gibt es eine Möglichkeit/Verfahren eine Gerade in Parameterform in Koordinatenform zu wandeln ?
Ich hab schon ein bisschen rumprobiert, an dieser Geraden:

[mm] \vektor{0 \\ 2 \\ 1} [/mm] + t  [mm] \vektor{1 \\ 0 \\ -1} [/mm]

bekomme da aber leider nichts hin .. vielleicht kann mir da ja jemand helfen...

        
Bezug
Param.- in Koordinatenform: Gleichungssystem aufstellen
Status: (Antwort) fertig Status 
Datum: 22:01 So 29.01.2006
Autor: Pacapear

Hallo!

> gibt es eine Möglichkeit/Verfahren eine Gerade in
> Parameterform in Koordinatenform zu wandeln ?

Jup, gibt es. Ich glaube es ging wie folgt:

>  Ich hab schon ein bisschen rumprobiert, an dieser
> Geraden:
>  
> [mm]\vektor{0 \\ 2 \\ 1}[/mm] + t  [mm]\vektor{1 \\ 0 \\ -1}[/mm]

Die Gerade schreibt man ja so:

[mm] \vec{x} [/mm] = [mm] \vektor{0 \\ 2 \\ 1} [/mm] + t * [mm] \vektor{1 \\ 0 \\ -1} [/mm]

Im Dreidimensionalen Raum ist  [mm] \vec{x} [/mm] ja [mm] \vektor{x_1 \\ x_2 \\ x_3} [/mm]

Also schreibst du die Gerade jetzt damit:

[mm] \vektor{x_1 \\ x_2 \\ x_3} [/mm] = [mm] \vektor{0 \\ 2 \\ 1} [/mm] + t * [mm] \vektor{1 \\ 0 \\ -1} [/mm]

Das kannst du jetzt als Lineares Gleichungssystem schreiben.
Und in dem musst du nur noch [mm] x_1, x_2 [/mm] und [mm] x_3 [/mm] bestimmen.

LG, Nadine

Bezug
                
Bezug
Param.- in Koordinatenform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:18 So 29.01.2006
Autor: DerHein

$ [mm] \vektor{x_1 \\ x_2 \\ x_3} [/mm] $ = $ [mm] \vektor{0 \\ 2 \\ 1} [/mm] $ + t * $ [mm] \vektor{1 \\ 0 \\ -1} [/mm] $

Was Nadiene glaube ich meinte ist, dass du die Variable t eliminieren musst.
Das machst du (z.B.) in dem du eine Gleichung nach t auflöst. Dann kannst du t in den beiden anderen durch einen Ausdruck in den [mm] $x_1,\dots,x_3$ [/mm] ersetzen und erhälst 2 lineare Gleichungen.
Das Nullstellengeblide einer linearen Gleichung ist eine (Hyper)Ebene
Zwei Ebenen im R3 schneiden sich (fast immer) in einer Greaden.
Das ist glaube ich das was du mit Koordinatenform meinst:
G ist die Menge alle Punkte für die beide Gleichungen erfüllt sind.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]