matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDeterminantenParallelepiped
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Determinanten" - Parallelepiped
Parallelepiped < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parallelepiped: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:11 Sa 08.05.2010
Autor: T_sleeper

Aufgabe
Sei ein Ortsvektor gegeben durch [mm] \vec{r}=(x,y,z) [/mm] mit [mm] x=r\mbox{sin}\theta\mbox{cos\ensuremath{\phi}},\, y=r\mbox{sin}\theta\mbox{sin}\phi,\, z=r\mbox{cos}\theta. [/mm] Es seien folgende Vektoren definiert:

[mm] \vec{e}_{r}:=\partial_{r}\vec{r},\,\,\vec{e}_{\theta}:=\partial_{\text{\ensuremath{\theta}}}\vec{r},\,\,\vec{e}_{\phi}:=\partial_{\phi}\vec{r}. [/mm] Man bestimme das Volumen des durch die Vektoren [mm] \vec{e}_{r},\vec{e}_{\theta},\vec{e}_{\phi} [/mm] gebildeten Parallelepipeds.

Hallo,

ich weiß, dass [mm] V=\mbox{det}(\vec{e}_{r},\vec{e}_{\theta},\vec{e}_{\phi}). [/mm] Dafür muss man dann erst diese definierten Vektoren ausrechnen.

Das komische bei mir ist, dass ich bei der Determinante am Ende rausbekomme [mm] V=r^{2}\mbox{sin}\theta, [/mm] wobei das dann ja eigentlich eine Fläche wäre.

Habe ich etwas falsch gemacht, oder muss da wirklich dieses Ergebnis rauskommen?

Ich kann ja mal noch meine Ableitungen aufschreiben:

[mm] \vec{e}_{r}&=(\mbox{sin}\theta\mbox{cos}\phi,\mbox{sin}\theta\mbox{sin}\phi,\mbox{cos}\theta)\\ [/mm]

[mm] \vec{e}_{\theta}&=(r\mbox{cos}\theta\mbox{cos}\phi,r\mbox{cos}\theta\mbox{sin}\phi,-r\mbox{sin}\theta)\\ [/mm]

[mm] \vec{e}_{\phi}&=(-r\mbox{sin}\theta\mbox{sin}\phi,r\mbox{sin}\theta\mbox{cos}\phi,0). [/mm]

Ich bin mir recht sicher, dass ich die Determinante richtig ausgerechnet habe, deshalb lasse ich die Rechnung hier mal weg.

Ist irgendwo ein Fehler oder kommt als Ergebnis wirklich [mm] r^2 sin\theta [/mm] raus? Müsste ja eigentlich was mit ^3 rauskommen...?

        
Bezug
Parallelepiped: Antwort
Status: (Antwort) fertig Status 
Datum: 22:49 Sa 08.05.2010
Autor: felixf

Moin!

> Sei ein Ortsvektor gegeben durch [mm]\vec{r}=(x,y,z)[/mm] mit
> [mm]x=r\mbox{sin}\theta\mbox{cos\ensuremath{\phi}},\, y=r\mbox{sin}\theta\mbox{sin}\phi,\, z=r\mbox{cos}\theta.[/mm]
> Es seien folgende Vektoren definiert:
>  
> [mm]\vec{e}_{r}:=\partial_{r}\vec{r},\,\,\vec{e}_{\theta}:=\partial_{\text{\ensuremath{\theta}}}\vec{r},\,\,\vec{e}_{\phi}:=\partial_{\phi}\vec{r}.[/mm]
> Man bestimme das Volumen des durch die Vektoren
> [mm]\vec{e}_{r},\vec{e}_{\theta},\vec{e}_{\phi}[/mm] gebildeten
> Parallelepipeds.
>  
> ich weiß, dass
> [mm]V=\mbox{det}(\vec{e}_{r},\vec{e}_{\theta},\vec{e}_{\phi}).[/mm]
> Dafür muss man dann erst diese definierten Vektoren
> ausrechnen.

Genau.

> Das komische bei mir ist, dass ich bei der Determinante am
> Ende rausbekomme [mm]V=r^{2}\mbox{sin}\theta,[/mm] wobei das dann ja
> eigentlich eine Fläche wäre.

Wieso? Nur weil da ein [mm] $r^2$ [/mm] anstelle eines [mm] $r^3$ [/mm] steht?

> Habe ich etwas falsch gemacht, oder muss da wirklich dieses
> Ergebnis rauskommen?
>  
> Ich kann ja mal noch meine Ableitungen aufschreiben:
>  
> [mm]\vec{e}_{r}&=(\mbox{sin}\theta\mbox{cos}\phi,\mbox{sin}\theta\mbox{sin}\phi,\mbox{cos}\theta)\\[/mm]
>  
> [mm]\vec{e}_{\theta}&=(r\mbox{cos}\theta\mbox{cos}\phi,r\mbox{cos}\theta\mbox{sin}\phi,-r\mbox{sin}\theta)\\[/mm]
>  
> [mm]\vec{e}_{\phi}&=(-r\mbox{sin}\theta\mbox{sin}\phi,r\mbox{sin}\theta\mbox{cos}\phi,0).[/mm]
>  
> Ich bin mir recht sicher, dass ich die Determinante richtig
> ausgerechnet habe, deshalb lasse ich die Rechnung hier mal
> weg.

Kleine Nebenrechnung: [mm] $r^2 \cos \phi (\cos^3 \phi \sin \phi [/mm] + [mm] \cos \phi \sin^3 \phi) [/mm] + [mm] r^2 \sin \phi (\sin^2 \phi \cos^2 \phi [/mm] + [mm] \sin^4 \phi) [/mm] = [mm] r^2 \cos^2 \phi \sin \phi [/mm] + [mm] r^2 \sin^3 \phi [/mm] = [mm] r^2 \sin \phi$. [/mm] Ja, du hast richtig gerechnet (wenn ich auch richtig gerechnet hab).

> Ist irgendwo ein Fehler oder kommt als Ergebnis wirklich
> [mm]r^2 sin\theta[/mm] raus? Müsste ja eigentlich was mit ^3
> rauskommen...?

Das Ergebnis stimmt so. Wenn du dir deine drei Vektoren anschaust, siehst du ja auch dass nur zwei davon von $r$ abhaengen -- der dritte eben nicht. Deswegen haengt das Volumen von [mm] $r^2$ [/mm] ab.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]