Parallele und gleiche Ebenen < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | Untersuche, ob die folgenden Ebenen parallel oder gleich sind.
[mm] E_{1} [/mm] sei gegeben durch [mm] P_{0}(1/4/2) [/mm] und g:r= [mm] \vektor{3 \\ 2\\ 1} [/mm] + [mm] \lambda \vektor{4 \\ 2\\ -3}
[/mm]
[mm] E_{2} [/mm] sei gegeben durch die sich schneidenden Geraden
[mm] g_{1}:r= \vektor{2 \\ 6\\ 1} [/mm] + [mm] \lambda \vektor{7 \\ 8\\ 3}
[/mm]
[mm] g_{2}:r= \vektor{2 \\ 6\\ 1} [/mm] + [mm] \lambda \vektor{2 \\ 3\\ -2} [/mm] |
So weit die Aufgabe. Angefangen haben wir im Unterricht dann so:
[mm] E_{1}:\vec{x} [/mm] = [mm] \vektor{1 \\ 4\\ 2} +s\vektor{4 \\ 2\\ -3} +t\vektor{-2 \\ 2\\ 1}
[/mm]
[mm] E_{2}:\vec{x} [/mm] = [mm] \vektor{2 \\ 6\\ 1} +s\vektor{7\\ 8\\ 3} +t\vektor{2 \\ 3\\ -2}
[/mm]
Nun wüsste ich gerne, wie man denn auf diese 2 Gleichungen kommt?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
> Untersuche, ob die folgenden Ebenen parallel oder gleich
> sind.
>
> [mm]E_{1}[/mm] sei gegeben durch [mm]P_{0}(1/4/2)[/mm] und g:r= [mm]\vektor{3 \\ 2\\ 1}[/mm]+ [mm]\lambda \vektor{4 \\ 2\\ -3}[/mm]
Also, du hast eine Gerade und einen Punkt gegeben, die beide in der Ebene [mm] E_1 [/mm] liegen sollen. Die Parameterform einer Ebene ist ja so aufgebaut, dass sie aus einem Punkt und zwei Richtungsvektoren besteht.
Daher kannst du den Punkt P, der ja gegeben ist, als Anfangspunkt deiner Ebene wählen, dann wäre P schonmal [mm] \in E_1. [/mm] Was jetzt noch fehlt, ist die Gerade. Die gerade besteht selbst aus einem Punkt und einem Richtungsvektor. Den Richtungsvektor der Geraden kannst du für die Ebene übernehmen, denn die Gerade soll ja in [mm] E_1 [/mm] verlaufen. Damit fehlt uns für die Ebene [mm] E_1 [/mm] noch ein zweiter Richtungsvektor. Da wir ja auch den Punkt der Geraden noch nicht übernommen haben, kreieren wir den zweiten Richtungsvektor als Vektor aus den Punkten P und dem Anfangspunkt der Gerade g also aus [mm]P_{0}(1/4/2)[/mm] und [mm]\vektor{3 \\ 2\\ 1}[/mm]
Die Differenz sieht dann so aus: (die Richtung ist hierbei egal, die Ebene ist ja unendlich, also kannst du sowohl P-G als auch G-P rechnen)
[mm]\vec P_0=\vektor{1 \\ 4\\ 2}[/mm]
[mm]\vektor{1 \\ 4\\ 2}-\vektor{3 \\ 2\\ 1}=\vektor{-2\\ 2\\ 1}[/mm]
Damit hast du alles für [mm]E_1:\vec x=\vektor{1 \\ 4\\ 2}+r*\vektor{4 \\ 2\\ -3}+s*\vektor{-2\\ 2\\ 1}[/mm]
>
> [mm]E_{2}[/mm] sei gegeben durch die sich schneidenden Geraden
>
> [mm]g_{1}:r= \vektor{2 \\ 6\\ 1}[/mm] + [mm]\lambda \vektor{7 \\ 8\\ 3}[/mm]
>
> [mm]g_{2}:r= \vektor{2 \\ 6\\ 1}[/mm] + [mm]\lambda \vektor{2 \\ 3\\ -2}[/mm]
Die Ebene [mm] E_2 [/mm] ist noch einfacher aufzustellen, da sie ja beide Geraden vollständig beinhalten soll! Das bedeutet, dass sie sowohl die beiden Richtungsvektoren als auch beide Punkte beinhalten muss.
Damit kannst du dir als Anfangspunkt der Ebene einen beliebigen Punkt der beiden Geraden aussuchen, da hier aber beide Geraden sogar denselben haben, spielt es gar keine Rolle, also ist der Vektor [mm] \vektor{2 \\ 6\\ 1} [/mm] der Anfangsvektor der Ebene.
Jetzt brauchst du nur noch zwei Richtungsvektoren und das sind genau die der Geraden, denn [mm] E_2 [/mm] soll ja beide Geraden beinhalten, also wird die Ebene [mm] E_2 [/mm] vom Punkt (2|6|1) aufgespannt, und zwar in die Richtung, in die [mm] g_1 [/mm] geht und in die Richtung, in die [mm] g_2 [/mm] geht, also entsteht die Parameterform der Ebene [mm] E_2 [/mm] durch den Anfangspunkt einer der Geraden und den beiden Richtungsvektoren, die alle so übernommen werden:
[mm]E_{2}:\vec{x}[/mm] = [mm]\vektor{2 \\ 6\\ 1} +s\vektor{7\\ 8\\ 3} +t\vektor{2 \\ 3\\ -2}[/mm]
> So weit die Aufgabe. Angefangen haben wir im Unterricht
> dann so:
>
> [mm]E_{1}:\vec{x}[/mm] = [mm]\vektor{1 \\ 4\\ 2} +s\vektor{4 \\ 2\\ -3} +t\vektor{-2 \\ 2\\ 1}[/mm]
>
> [mm]E_{2}:\vec{x}[/mm] = [mm]\vektor{2 \\ 6\\ 1} +s\vektor{7\\ 8\\ 3} +t\vektor{2 \\ 3\\ -2}[/mm]
>
>
> Nun wüsste ich gerne, wie man denn auf diese 2 Gleichungen
> kommt?
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:14 Mi 04.06.2008 | Autor: | Hohlbirne |
Tausend dank!
Du hast es so erklärt, dass ich es auch verstanden habe! :D
|
|
|
|