matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenParallele Ebenen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Geraden und Ebenen" - Parallele Ebenen
Parallele Ebenen < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parallele Ebenen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:40 Mi 01.08.2018
Autor: rubi

Aufgabe
Gegeben ist die Ebenenschar [mm] E_a: ax_1+(a-2)*x_2+x_3=4 [/mm]
(a [mm] \in \IR). [/mm]
Begründen Sie, dass die Schar keine zueinander parallele Ebenen besitzt.

Hallo zusammen,

ich habe folgende Lösung für die Aufgabe:
Wir betrachten zwei verschiedene Ebenen der Schar mit dem Parametern a und b wobei a<>b ist.

Wären die Ebenen parallel, würde für die Normalenvektoren gelten:

[mm] k*\vektor{a \\ a-2 \\1} [/mm] = [mm] \vektor{b \\ b-2 \\ 1} [/mm]

Aus der 3.Zeile folgt k = 1.
Aus den anderen beiden Zeilen folgt a = b.
Die Gleichheit a = b darf aber nicht sein, da es sich sonst nicht um zwei verschiedene Ebenen der Schar handeln würde.

Damit ist gezeigt, dass es keine 2 Ebenen der Schar gibt, die parallel sind.


Ich halte diese Lösung für mathematisch korrekt, stehe aber momentan in der Diskussion mit einem Mathematiklehrer, der argumentiert, dass ich die rechte Seite der Ebenengleichung (=4) bei der Argumentation hätte berücksichtigen müssen und dass meine Annahme dass a <> b sei nicht korrekt wäre, da auch zwei Ebenen mit dem gleichen Normalenvektor zueinander parallel sind.

Ich argumentiere, dass wenn ich a =b unterstellen würde ich ja dann automatisch zwei gleiche Ebenen der Schar erhalte, die natürlich dann trivialerweise parallel (und sogar gleich sind).

Ich bitte daher um eure Meinung bzgl. dieser Diskussion, vielen Dank.

Grüße
Rubi

Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
Parallele Ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:36 Do 02.08.2018
Autor: HJKweseleit

[mm] E_a: ax_1+(a-2)*x_2+x_3=4 [/mm]

Du hast Recht!

Natürlich ist jede Ebene
E: [mm] bx_1+(b-2)*x_2+x_3=s [/mm]

für s<>4 echt parallel zu [mm] E_a, [/mm] wenn man b=a einsetzt. Aber danach ist hier gar nicht gefragt. Es geht überhaupt nur um die obige Gleichung für [mm] E_a, [/mm] und wenn man gezeigt hat, dass Parallelität für a<>b nicht eintreten kann, weil die Normalenvektoren dann nicht parallel sind, spielt doch die 4 keine Rolle mehr.

Der Einwand: "Ja, aber wenn es (bei b) statt 4 eine 5 wäre, wäre es doch parallel" ist unsinnig, weil zunächst ja a=b sein muss, und dann sind beide Ebenen identisch und somit sowieso parallel. Dann kann da eine 4, 5 oder sonstwas stehen. Aber für a<> b gibt es sowieso keine Parallelität, egal, ob hinten eine 4 oder 5 oder sonstwas steht.

Zusatzbemerkung:

Nehmen wir an, eine weitere Aufgabe hieße: Finden Sie zwei Ebenen der Schar, die orthogonal zueinander sind. Du knobelst etwas herum und findest für a= - 0,5 und b = 2:


[mm] \vektor{a\\a-2\\1}=\vektor{-0,5\\-2,5\\1} [/mm] sowie [mm] \vektor{b\\b-2\\1}=\vektor{2\\0\\1} [/mm]


und [mm] \vektor{-0,5\\-2,5\\1}*\vektor{2\\0\\1}=-1+1=0also [/mm] sind beide orthogonal.

Welche Rolle spielt hier die 4 in der Gleichung von [mm] E_a? [/mm]



Bezug
        
Bezug
Parallele Ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:37 Do 02.08.2018
Autor: fred97

Die Einwände Deines Lehrers sind für mich nicht nachvollziehbar !

Nehmen wir uns zwei Ebenen der Schar her:

$ [mm] E_a: ax_1+(a-2)\cdot{}x_2+x_3=4 [/mm] $

und

$ [mm] E_b: bx_1+(b-2)\cdot{}x_2+x_3=4 [/mm] $.

Wenn a=b ist, ist die Sache klar, wir haben mit [mm] E_a [/mm] und [mm] E_b [/mm] die gleiche Ebene.

Somit können wir $a [mm] \ne [/mm] b$ annehmen und die Frage stellen: sind [mm] E_a [/mm] und [mm] E_b [/mm] parallel oder nicht ?

Sie sind genau dann parallel, wenn die Normalenvektoren der beiden Ebenen linear abhängig sind, wenn es also eine reelle Zahl k gibt mit


$ [mm] k\cdot{}\vektor{a \\ a-2 \\1} [/mm] $ = $ [mm] \vektor{b \\ b-2 \\ 1} [/mm] $.

Die letzte Gleichung ist genau dann erfüllt, wenn k=1 ist. Das ist aber gleichbedeutend mit $a=b$.

Fazit: [mm] E_a [/mm] und [mm] E_b [/mm] sind genau dann parallel, wenn a=b ist. In diesem Fall ist [mm] E_a=E_b. [/mm]

Fertig ist der Schuh ! Wenn dieser Schuh Deinem Lehrer nicht passt, soll er sich entweder andere Schuhe oder andere Füße besorgen. Dein Problem ist das jedenfalls nicht. Du hast alles richtig gemacht.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]