matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisParabeln und Tangenten. Wichtig ! + x^3 Ableitung!
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Schul-Analysis" - Parabeln und Tangenten. Wichtig ! + x^3 Ableitung!
Parabeln und Tangenten. Wichtig ! + x^3 Ableitung! < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parabeln und Tangenten. Wichtig ! + x^3 Ableitung!: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:38 Do 02.09.2004
Autor: Freddie

Hy ich brauche die Antwort bis frühestens morgen um 09.00.
Wäre also wirklich sehr nett (mündliche Prüfung). Danke.

Also in der Arbeit hatte ich eine normale Parabel (0 Punkte waren durch Zeichnung gegeben). Nehmen wir mal als BSP 2 und 10 !

So an diese Parabel waren 2 Tangenten gelegt die sich kreutzen.
Eine positive Steigung und eine negative.
Schnittpunkt der Tangenten über dem Scheitelpunkt. Symetrisch?
Einmal bei zb. (5 | f(5) ) und einmal bei (10 | (f ( 15) )!
Ich weiß die Nullpunkte und die ersten Zahlen der X-Koordinaten nicht mehr.

F(5) und F(15) das waren die Schnittpunkten der Tangenten mit der Parabel und zudem waren f5=f15 auf der y-achse gleich (!) hoch also auf dem selben Wert was mich irretiert hat.

Aufgaben:

> Bestimmen Sie den Schnittpunkt der Tangenten (über dem Scheitelpunkt der Parabel).

(Lösungsweg für andere Parameter)

> Wie lang müssen die Tangenten sein?
> Tangenten funktion !

So und dann wie ist die Definition der Ableitung von [mm] x^3 [/mm] ?
Also einfach so Ableiten sehe ich sofort [mm] 3x^2 [/mm] usw.
Nur das ganze per Definition hab ich leider nicht verstanden.

Danke Leute...

        
Bezug
Parabeln und Tangenten. Wichtig ! + x^3 Ableitung!: Antwort
Status: (Antwort) fertig Status 
Datum: 16:12 Do 02.09.2004
Autor: Fermat2k4

Hi,

ich habe nicht ganz verstanden, was du damit meinst:

>Also in der Arbeit hatte ich eine normale Parabel (0 Punkte waren durch Zeichnung gegeben). Nehmen wir mal als BSP 2 und 10 !

Irgendwie ist mir deine Beschreibung ein wenig unklar.

Aber was die Differenzierung der Funktion angeht, kann ich dir helfen!
Es sei also eine Funktion f mit f (x) = [mm] x^{n} [/mm] definiert, so gilt für die erste Ableitung (also die Steigung der Tangente an der Stelle x)
f ' (x) = [mm] n*x^{n-1} [/mm]

Vielleicht konnte ich dir ein wenig helfen...

Gruß

Alex

Bezug
        
Bezug
Parabeln und Tangenten. Wichtig ! + x^3 Ableitung!: Antwort
Status: (Antwort) fertig Status 
Datum: 16:20 Do 02.09.2004
Autor: Julius

Hallo Freddie!

> So und dann wie ist die Definition der Ableitung von [mm]x^3[/mm]
> ?
>  Also einfach so Ableiten sehe ich sofort [mm]3x^2[/mm] usw.
>  Nur das ganze per Definition hab ich leider nicht
> verstanden.

Kann es sein, dass du die Herleitung mit dem Differenzenquotienten meinst?

Dann musst du

[mm] $\lim\limits_{x \to x_0} \frac{x^3 - x_0^3}{x-x_0}$ [/mm]

berechnen.

Mit Polynomdivision stellst du fest, dass

[mm] $(x^3 [/mm] - [mm] x_0^3) [/mm] : [mm] (x-x_0) [/mm] = [mm] x^2 [/mm] + [mm] x_0^2 [/mm] + [mm] xx_0$ [/mm]

gilt und berechnest:

[mm] $\lim\limits_{x \to x_0} \frac{x^3 - x_0^3}{x-x_0}$ [/mm]

$= [mm] \lim\limits_{x \to x_0} (x^2 [/mm] + [mm] x_0^2 [/mm] + [mm] xx_0)$ [/mm]

$= [mm] x_0^2 [/mm] + [mm] x_0^2 [/mm] + [mm] x_0^2$ [/mm]

$= [mm] 3x_0^2$, [/mm]

also - da [mm] $x_0$ [/mm] beliebig gewählt war-

$f'(x) = [mm] 3x^2$ [/mm]

für [mm] $f(x)=x^3$. [/mm]

Meintest du das?

Den Rest deiner Fragen verstehe ich nicht so wirklich, weil mir (ähnlich wie Alex) die Beschreibung nicht viel sagt. :-(

Liebe Grüße
Julius

Bezug
                
Bezug
Parabeln und Tangenten. Wichtig ! + x^3 Ableitung!: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:38 Do 02.09.2004
Autor: e.kandrai

Den ersten Teil hab ich auch nicht kapiert, aber das mit der "Definition der Ableitung" hab ich in der Schule auch genau so gelernt, wie's Julius beschrieben hat, also die Berechnung (evtl. auch Erklärung) anhand des Differentialquotienten.

Bezug
        
Bezug
Parabeln und Tangenten. Wichtig ! + x^3 Ableitung!: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:47 Do 02.09.2004
Autor: Freddie

Siehe neuster Post in diesem Thread.
Dort habe ich alles nochmal verständlicher hingeschrieben.

https://matheraum.de/read?f=1&t=2250&i=2250

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]