matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenParabellänge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - Parabellänge
Parabellänge < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Parabellänge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:15 So 22.06.2008
Autor: marc62

Aufgabe
Um nochmal meine Unkenntnis in Sachen Vektoren zu unterstreichen , noch folgende Frage
WIe bestimme ich die Länges der Parabel a(t)= [mm] {t\choose t^2}, 0\le t\le1 [/mm]

??

        
Bezug
Parabellänge: Antwort
Status: (Antwort) fertig Status 
Datum: 13:21 So 22.06.2008
Autor: schachuzipus

Hallo marc62,

> Um nochmal meine Unkenntnis in Sachen Vektoren zu
> unterstreichen , noch folgende Frage
> WIe bestimme ich die Länges der Parabel a(t)= [mm]{t\choose t^2}, 0\le t\le1[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


>  
> ??


Stichwort Bogenlänge.

Berechne $l_a=\int\limits_{0}^{1}||a'(t)|| \ dt}$


LG

schachuzipus



Bezug
                
Bezug
Parabellänge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:03 So 22.06.2008
Autor: marc62

Wäre das dann so ,

[mm] \integral_{0}^{1} 2t+1\,dt [/mm]  

und das wäre dann doch 2 , oder ?

Bezug
                        
Bezug
Parabellänge: Antwort
Status: (Antwort) fertig Status 
Datum: 14:12 So 22.06.2008
Autor: schachuzipus

Hallo nochmal,

> Wäre das dann so ,
>
> [mm]\integral_{0}^{1} 2t+1\,dt[/mm]  [notok]
>
> und das wäre dann doch 2 , oder ?


Es ist doch [mm] $a'(t)=\vektor{1\\2t}$ [/mm]

Also [mm] $||a'(t)||=\sqrt{1^2+(2t)^2}=\sqrt{1+4t^2}$ [/mm]

Das Integral [mm] $\int\limits_{0}^{1}{\sqrt{4t^2+1} \ dt}$ [/mm] ist allerdings ziemlich unschön zu berechnen.

Du kannst hier erstmal unter der Wurzel die 4 ausklammern und dann rausziehen:

[mm] $...=2\cdot{}\int\limits_{0}^1{\sqrt{t^2+\frac{1}{4}} \ dt}$ [/mm]

Hier hilfe m.E. die Substitution [mm] $t:=\frac{1}{2}\cdot{}\sinh(u)$ [/mm] weiter ...

Im weiteren Verlauf steht wohl auch noch eine partielle Integration an ...

Also ziemlich unschön, das Ganze

Gruß

schachuzipus

Bezug
                                
Bezug
Parabellänge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:23 So 22.06.2008
Autor: marc62

Oh je!!!
Aber danke erstmal !

Kann das evt so aussehen:


[mm] \bruch {1}{4}*(2*\wurzel{4t^2+1}*t+sinh(t) [/mm]



Bezug
                                        
Bezug
Parabellänge: Antwort
Status: (Antwort) fertig Status 
Datum: 14:34 So 22.06.2008
Autor: schachuzipus

Hallo nochmal,

> Oh je!!!

kann man wohl sagen ;-)

>  Aber danke erstmal !
>  
> Kann das evt so aussehen:
>  
>
> [mm]\bruch {1}{4}*(2*\wurzel{4t^2+1}*t+sinh(t)[/mm]

Beinahe, es hat schon große Ähnlichkeit mit der Lösung ;-)

Ich komme auf den Ausdruck [mm] $\frac{1}{4}\cdot{}\left[\sinh(u)\cdot{}\cosh(u)+u\right]$ [/mm]

Wenn ich das zurücksubstituiere [mm] $\left[ \ t=\frac{1}{2}\sinh(u)\Rightarrow u=arcsinh(2t) \ \right]$, [/mm] so komme ich auf:

[mm] $\frac{1}{4}\cdot{}\left[2t\cdot{}\sqrt{1+4t^2}+arcsinh(2t)\right]$ [/mm]


Gruß

schachuzipus

>  
>  


Bezug
                                                
Bezug
Parabellänge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:45 So 22.06.2008
Autor: marc62

zum schluss noch ne dumme Frage. Wie kann ich den arcsinh (2) berechnen.
das ist doch auch das gleiche wie sinh^-1.

Auf meinem Taschenrechner geht das leider nicht

Bezug
                                                        
Bezug
Parabellänge: Antwort
Status: (Antwort) fertig Status 
Datum: 17:56 So 22.06.2008
Autor: MathePower

Hallo marc62,

> zum schluss noch ne dumme Frage. Wie kann ich den arcsinh
> (2) berechnen.
> das ist doch auch das gleiche wie sinh^-1.
>
> Auf meinem Taschenrechner geht das leider nicht  

Ich kenne zwar Deinen Taschenrechner nicht,
aber auf meinem Taschenrechner (Casio fx-1150) geht das so:

     2 SHIFT hyp sin

Gruß
MathePower

Bezug
                                                                
Bezug
Parabellänge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:05 So 22.06.2008
Autor: marc62

Dankeschön!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]